I'm looking to adjust values of one column based on a conditional in another column.
I'm using np.busday_count, but I don't want the weekend values to behave like a Monday (Sat to Tues is given 1 working day, I'd like that to be 2)
dispdf = df[(df.dispatched_at.isnull()==False) & (df.sold_at.isnull()==False)]
dispdf["dispatch_working_days"] = np.busday_count(dispdf.sold_at.tolist(), dispdf.dispatched_at.tolist())
for i in range(len(dispdf)):
if dispdf.dayofweek.iloc[i] == 5 or dispdf.dayofweek.iloc[i] == 6:
dispdf.dispatch_working_days.iloc[i] +=1
Sample:
dayofweek dispatch_working_days
43159 1.0 3
48144 3.0 3
45251 6.0 1
49193 3.0 0
42470 3.0 1
47874 6.0 1
44500 3.0 1
43031 6.0 3
43193 0.0 4
43591 6.0 3
Expected Results:
dayofweek dispatch_working_days
43159 1.0 3
48144 3.0 3
45251 6.0 2
49193 3.0 0
42470 3.0 1
47874 6.0 2
44500 3.0 1
43031 6.0 2
43193 0.0 4
43591 6.0 4
At the moment I'm using this for loop to add a working day to Saturday and Sunday values. It's slow!
Can I use a vectorization instead to speed this up. I tried using .apply but to no avail.