It's actually somewhat involved. For starters, we should note that std::vector::push_back is overloaded on the two reference types:
void push_back( const T& value );
void push_back( T&& value );
The first overload is invoked when we pass an lvalue to push_back, because only an lvalue reference type can bind to an lvalue, like f in your second version. And in the same fashion, only an rvalue reference can bind to an rvalue like in your first version.
Does it make a difference? Only if your type benefits from move semantics. You didn't provide any copy or move operation, so the compiler is going to implicitly define them for you. And they are going to copy/move each member respectively. Because std::string (of which you have a member) actually does benefit from being moved if the string is very long, you might see better performance if you choose not to create a named object and instead pass an rvalue.
But if your type doesn't benefit from move semantics, you'll see no difference whatsoever. So on the whole, it's safe to say that you lose nothing, and can gain plenty by "creating the object at the call".
Having said all that, we mustn't forget that a vector supports another insertion method. You can forward the arguments for foo's constructor directly into the vector via a call to std::vector::emplace_back. That one will avoid any intermediate foo objects, even the temporary in the call to push_back, and will create the target foo directly at the storage the vector intends to provide for it. So emplace_back may often be the best choice.
vector.emplace_back()to construct an object directly inside the vector. Your example will still make a temporary that is passed into the vector.list.emplace_back(val, str);. This will forward the arguments to the constructor and construct it "in place".