I have a swigged C++ class container, MyContainer, holding objects of type MyObject, also a C++ class.
The following is the C++ header code (freemenot.h)
#ifndef freemenotH
#define freemenotH
#include <vector>
#include <string>
using std::string;
class MyObject
{
public:
MyObject(const string& lbl);
~MyObject();
string getLabel();
private:
string label;
};
class MyContainer
{
public:
MyContainer();
~MyContainer();
void addObject(MyObject* o);
MyObject* getObject(unsigned int t);
int getNrOfObjects();
private:
std::vector<MyObject*> mObjects;
};
#endif
and this is the source (freemenot.cpp)
#include "freemenot.h"
#include <iostream>
using namespace std;
/* MyObject source */
MyObject::MyObject(const string& lbl)
:
label(lbl)
{ cout<<"In object ctor"<<endl; }
MyObject::~MyObject() { cout<<"In object dtor"<<endl; }
string MyObject::getLabel() { return label; }
/* MyContainer source */
MyContainer::MyContainer() { cout<<"In container ctor"<<endl; }
MyContainer::~MyContainer()
{
cout<<"In container dtor"<<endl;
for(unsigned int i = 0; i < mObjects.size(); i++)
{
delete mObjects[i];
}
}
int MyContainer::getNrOfObjects() { return mObjects.size(); }
void MyContainer::addObject(MyObject* o) { mObjects.push_back(o); }
MyObject* MyContainer::getObject(unsigned int i) { return mObjects[i]; }
Observe that the objects are stored as RAW POINTERS in the vector. The class is such designed, and the container is thus responsible to free the objects in its destructor, as being done in the destructors for loop.
In C++ code, like below, an object o1 is added to the container c, which is returned to client code
MyContainer* getAContainerWithSomeObjects()
{
MyContainer* c = new MyContainer();
MyObject* o1 = new MyObject();
c.add(o1);
return c;
}
The returned container owns its objects, and are responsible to de-allocate these objects when done. In C++, access to the containers objects is fine after the function exits above.
Exposing the above classes to python, using Swig, will need an interface file. This interface file looks like this
%module freemenot
%{ #include "freemenot.h" %}
%include "std_string.i"
//Expose to Python
%include "freemenot.h"
And to generate a Python module, using CMake, the following CMake script was used.
cmake_minimum_required(VERSION 2.8)
project(freemenot)
find_package(SWIG REQUIRED)
include(UseSWIG)
find_package(PythonInterp)
find_package(PythonLibs)
get_filename_component(PYTHON_LIB_FOLDER ${PYTHON_LIBRARIES} DIRECTORY CACHE)
message("Python lib folder: " ${PYTHON_LIB_FOLDER})
message("Python include folder: " ${PYTHON_INCLUDE_DIRS})
message("Python libraries: " ${PYTHON_LIBRARIES})
set(PyModule "freemenot")
include_directories(
${PYTHON_INCLUDE_PATH}
${CMAKE_CURRENT_SOURCE_DIR}
)
link_directories( ${PYTHON_LIB_FOLDER})
set(CMAKE_MODULE_LINKER_FLAGS ${CMAKE_CURRENT_SOURCE_DIR}/${PyModule}.def)
set_source_files_properties(${PyModule}.i PROPERTIES CPLUSPLUS ON)
set_source_files_properties(${PyModule}.i PROPERTIES SWIG_FLAGS "-threads")
SWIG_ADD_LIBRARY(${PyModule}
MODULE LANGUAGE python
SOURCES ${PyModule}.i freemenot.cpp)
SWIG_LINK_LIBRARIES (${PyModule} ${PYTHON_LIB_FOLDER}/Python37_CG.lib )
# INSTALL PYTHON BINDINGS
# Get the python site packages directory by invoking python
execute_process(COMMAND python -c "import site; print(site.getsitepackages()[0])" OUTPUT_VARIABLE PYTHON_SITE_PACKAGES OUTPUT_STRIP_TRAILING_WHITESPACE)
message("PYTHON_SITE_PACKAGES = ${PYTHON_SITE_PACKAGES}")
install(
TARGETS _${PyModule}
DESTINATION ${PYTHON_SITE_PACKAGES})
install(
FILES ${CMAKE_CURRENT_BINARY_DIR}/${PyModule}.py
DESTINATION ${PYTHON_SITE_PACKAGES}
)
Generating the make files using CMake, and compiling using borlands bcc32 compiler, a Python module (freemenot) is generated and installed into a python3 valid sitepackages folder.
Then, in Python, the following script can be used to illuminate the problem
import freemenot as fmn
def getContainer():
c = fmn.MyContainer()
o1 = fmn.MyObject("This is a label")
o1.thisown = 0
c.addObject(o1)
return c
c = getContainer()
print (c.getNrOfObjects())
#if the thisown flag for objects in the getContainer function
#is equal to 1, the following call return an undefined object
#If the flag is equal to 0, the following call will return a valid object
a = c.getObject(0)
print (a.getLabel())
This Python code may look fine, but don't work as expected. Problem is that, when the function getContainer() returns, the memory for object o1 is freed, if the thisown flag is not set to zero. Accessing the object after this line, using the returned container will end up in disaster. Observe, there is not nothing wrong with this per se, as this is how pythons garbage collection works.
For the above use case being able to set the python objects thisown flag inside the addObject function, would render the C++ objects usable in Python. Having the user to set this flag is no good solution. One could also extend the python class with an "addObject" function, and modifying the thisown flag inside this function, and thereby hiding this memory trick from the user.
Question is, how to get Swig to do this, without extending the class? I'm looking for using a typemap, or perhaps %pythoncode, but I seem not able to find a good working example.
The above code is to be used by, and passed to, a C++ program that is invoking the Python interpreter. The C++ program is responsible to manage the memory allocated in the python function, even after PyFinalize().
The above code can be downloaded from github https://github.com/TotteKarlsson/miniprojects
addObjectto steal the Python createdMyObjectautomatically? Do you require thatMyContainerobjects can be created by both C++ and Python code, or only Python code? What do you want to happen if you use Python to add an instance that came from C++ to begin with?addObject? b) can I make MyContainer hold a reference to the PyObject behind everything that gets added to it. (Both are neat techniques, besides tweakingthisown, so I might try and write all 3 options up).