Kotlin stdlib opts for interface immutability. That means, the interface an implementation is boxed in determines the mutability of the reference itself.
Therefore, the right way to make a MutableList<T> just a List<T> is to box it, like follows:
val myMutableList = mutableListOf(1, 2, 3, 4)
val myImmutableList = myMutableList as List<Int>
That way, being the myImmutableList reference boxed in a List<Int>, it will only expose members from List<Int>, and not those that just MutableList<Int> define, which allow to mutate the state of the object, hence the list.
Then, if you really want to avoid the following issue (resuming from the above code),
val hackedList = myImmutableList as MutableList<Int>
... for which you would be able to access the mutable implementation through unboxing, you may rather be opting for the following solution:
class ImmutableList<T>(list: MutableList<T>) : List<T> by list
fun <T> MutableList<T>.toImmutable() = ImmutableList(this)
And then use it as follows:
val myMutableList = mutableListOf(1, 2, 3, 4)
val myImmutableList = myMutableList.toImmutable()
So you'll be avoiding the issue above. Indeed, any attempt to unbox the value return from MutableList<T>.toImmutable() will end up with a TypeCastException, as the implementation of the List<T> is no longer a MutableList<T>. Rather, it is an ImmutableList<T>, which doesn't expose any methods that might mutate the object.
Unlike @Lucas method, this way you won't be wasting time to copy elements, as you'll be relying on the by keyword in Kotlin, which allows you to implement an interface through an already existing implementation. That is, the MutableList<T> you'll be passing to the constructor of ImmutableList<T>.
listas well, so it might be worthwhile to implement the class with a factory.