In short, ditch the await. By using await, you are literally telling it to wait here until it is done with this one thing.
If you want to parallelize them, make use of Promise.all(). Any async function returns a Promise which can still be used like a normal Promise. Promise.all() accepts an array of Promise objects, and will call then() once all of those requests are done, giving you an array of the results from each.
You could do something like this:
const urls = [/* bunch of URLs */];
Promise.all(
urls.map(url =>
fetch(url).then(res => res.text())
)
).then(results => /* do something with results */)
In this case, results will be an array of the results from your various requests, in the same order as they were passed in.
Now, if you want to be able to have a specific number of them running at a time, you'd want to change it up a bit and have some limits on what's going on.
I usually use a technique which just uses a simple counter to keep track of how many are active, and then fires off more when they are done.
You can do something like this:
// dummy fetch for example purposes, resolves between .2 and 3 seconds
const fakeFetch = url => new Promise(resolve => setTimeout(() => resolve(url), Math.random() * 2800 + 200));
const inputUrls = ['a', 'b', 'c', 'd', 'e', 'f', 'g'];
const limit = 2; // this sets the limit of how many can run at once, set to 10 to run 10 concurrently
const delay = 100; // delay in ms between each batch starting
function fetchAll(urls) {
let active = 0;
let queue = urls.slice(0); // clone urls
// inner function so urls and results can be shared with all calls
function fetchAllInner() {
if (active < limit && queue.length) {
const count = Math.min(limit - active, queue.length);
const urlsThisBatch = queue.slice(0, count);
queue = queue.slice(count); // remaining
return Promise.all(
urlsThisBatch.map(url => {
active++; // increment active
console.log('start', url);
return fakeFetch(url)
.then(r => {
console.log('done', url);
active--; // decrement active
return new Promise(resolve => // new Promise to promisify setTimeout
setTimeout(() =>
resolve(fetchAllInner() // kicks off run again when one finishes
.then(fetchR => [].concat(r, fetchR)) // combine them
), delay
)
);
})
})
).then(r => r.reduce((a, u) => [].concat(u, a), [])); // flatten from Promise.all()
}
return Promise.resolve([]); // final resolve
}
return fetchAllInner();
}
fetchAll(inputUrls)
.then(results => console.log('all done', results));
In a nutshell, what this is doing is it'll create a Promise.all() for a batch (however many we can start up until we hit our limit). Then, when one finishes, it'll set a timeout to start up another batch by recursively calling the same function. It's wrapped in another function simply to avoid having to have some variables be global.
This also has an added delay if you want, so you can throttle how many requests you'll make and not hammer the system too bad. If you don't want to use a delay, you can just set it to 0 or remove the new Promise(resolve => setTimeout bit.
The above version is a bit verbose to make it easier to understand. Here is a more "production-ready" version (be sure to switch fakeFetch to fetch and handle calling res.text())
const fakeFetch = url => new Promise(resolve => setTimeout(() => resolve(url), Math.random() * 2800 + 200));
function fetchAll(urls, limit = 10, delay = 200) {
let active = 0;
const queue = urls.splice(0);
function fetchAllInner() {
if (active >= limit || !queue.length) {
return Promise.resolve([]);
}
const count = Math.min(limit - active, queue.length);
active = limit;
return Promise.all(
queue.splice(0, count)
.map(url => fakeFetch(url)
.then(r => {
active--;
return new Promise(resolve =>
setTimeout(() => resolve(
fetchAllInner().then(fetchR => [].concat(r, fetchR))
), delay)
);
})
)
).then(r =>
r.reduce((a, u) => [].concat(u, a), []));
}
return fetchAllInner();
}
console.log('give it a few seconds');
fetchAll(['a', 'b', 'c', 'd', 'e', 'f', 'g'])
.then(r => console.log('all done', r))
r2an array or a plain object?