That's simple, let's see how it works. First of all, the encrypted message is obtained by subtracting the key.
enc = msg + key (mod 127)
How can we obtain the original message? That's easy, subtract the key in both sides
enc - key = msg + key - key (mod 127)
And here we get:
enc - key = msg (mod 127)
For more details, please refer to Modular arithmetic, I think it should belong one of group/field/ring. I'm not an expert in math, for further reading, you should check out Number theory. Here is the refined code:
def encrypt(key, msg):
encryped = []
for i, c in enumerate(msg):
key_c = ord(key[i % len(key)])
msg_c = ord(c)
encryped.append(chr((msg_c + key_c) % 127))
return ''.join(encryped)
def decrypt(key, encryped):
msg = []
for i, c in enumerate(encryped):
key_c = ord(key[i % len(key)])
enc_c = ord(c)
msg.append(chr((enc_c - key_c) % 127))
return ''.join(msg)
if __name__ == '__main__':
key = 'This_is_my_awsome_secret_key'
msg = 'Hello world'
encrypted = encrypt(key, msg)
decrypted = decrypt(key, encrypted)
print 'Message:', repr(msg)
print 'Key:', repr(key)
print 'Encrypted:', repr(encrypted)
print 'Decrypted:', repr(decrypted)
Output
Message: 'Hello world'
Key: 'This_is_my_awsome_secret_key'
Encrypted: '\x1dNV`O\nkO`fD'
Decrypted: 'Hello world'