I have just started to learn python and don't have much of dev background. Here is the code I have written while learning.
I now want to make a function which exactly does what my "for" loop is doing but it needs to calculate different exp(exp,exp1 etc) based on different num(num, num1 etc)
how can I do this?
import pandas as pd
index = [0,1]
s = pd.Series(['a','b'],index= index)
t = pd.Series([1,2],index= index)
t1 = pd.Series([3,4],index= index)
df = pd.DataFrame(s,columns = ["str"])
df["num"] =t
df['num1']=t1
print (df)
exp=[]
for index, row in df.iterrows():
if(row['str'] == 'a'):
row['mul'] = -1 * row['num']
exp.append(row['mul'])
else:
row['mul'] = 1 * row['num']
exp.append(row['mul'])
df['exp'] = exp
print (df)
This is what i was trying to do which gives wrong results
import pandas as pd
index = [0,1]
s = pd.Series(['a','b'],index= index)
t = pd.Series([1,2],index= index)
t1 = pd.Series([3,4],index= index)
df = pd.DataFrame(s,columns = ["str"])
df["num"] =t
df['num1']=t1
def f(x):
exp=[]
for index, row in df.iterrows():
if(row['str'] == 'a'):
row['mul'] = -1 * x
exp.append(row['mul'])
else:
row['mul'] = 1 * x
exp.append(row['mul'])
return exp
df['exp'] = df['num'].apply(f)
df['exp1'] = df['num1'].apply(f)
df
Per suggestion below, I would do:
df['exp']=np.where(df.str=='a',df['num']*-1,df['num']*1)
df['exp1']=np.where(df.str=='a',df['num1']*-1,df['num1']*1)