I have changed your data. Wrap workplace and department data in double quotes so that I can get data with comma separated value. Then add a custom separator so that later I can use the separator to separate data. You can use your own separator. The image is below:

The data is as follows:
Michael,100," Montreal,Toronto", Male,30, DB:80," Product,DeveloperLead"
Will,101, Montreal, Male,35, Perl:85," Product,Lead,Test,Lead"
Steven,102, New York, Female,27, Python:80," Test,Lead,COE,Architect"
Lucy,103, Vancouver, Female,57, Sales:89_HR:94," Sales,Lead"
Below are the code changes I have performed which worked fine for me:
val df = spark.read.csv("CSV PATH HERE")
case class Ayush(name: String,employee_id:String ,work_place: Array[String],sex_age: Map [String,String],skills_score: Map[String,String],depart_title: Map[String,Array[String]])
val resultDF = df.map { x => {
val departTitleData = x(6).toString
val skill_score = x(5).toString
val skill_Map = scala.collection.mutable.Map[String, String]()
// Separate skill by underscore I can get each skill:Num then i will add each one in map
skill_score.split("_").foreach { x => skill_Map += (x.split(":")(0) -> x.split(":")(1)) }
// Putting data into case class
new Ayush(x(0).toString(), x(1).toString, x(2).toString.split(","), Map(x(3).toString -> x(4).toString), skill_Map.toMap, Map(x(6).toString.split(",")(0) -> x(6).toString.split(",")) )
}}
//End Here
The above code output is:
===============================================================================
+-------+-----------+--------------------+------------------+--------------------+--------------------+
| name|employee_id| work_place| sex_age| skills_score| depart_title|
+-------+-----------+--------------------+------------------+--------------------+--------------------+
|Michael| 100|[ Montreal, Toronto]| Map( Male -> 30)| Map( DB -> 80)|Map( Product -> W...|
| Will| 101| [ Montreal]| Map( Male -> 35)| Map( Perl -> 85)|Map( Product -> W...|
| Steven| 102| [ New York]|Map( Female -> 27)| Map( Python -> 80)|Map( Test -> Wrap...|
| Lucy| 103| [ Vancouver]|Map( Female -> 57)|Map(HR -> 94, Sa...|Map( Sales -> Wra...|
+-------+-----------+--------------------+------------------+--------------------+--------------------+
- It may not be as what you expected, but it may help you achieve what you are trying to do...