0

I have a pandas.DataFrame named fake_num:

  fake_num=pd.DataFrame([[1,2,3,4,np.nan,np.nan,np.nan],[1.1,1.2,1.3,1.4,1.6,1.8,2.5]]).T
  fake_num
    Out[4]: 
         0    1
    0  1.0  1.1
    1  2.0  1.2
    2  3.0  1.3
    3  4.0  1.4
    4  NaN  1.6
    5  NaN  1.8
    6  NaN  2.5    

I am trying to fill the NaN values using a linear regression:

    from sklearn.linear_model import LinearRegression
    fdrop=fake_num.dropna(axis=0,how='any')
    lr=LinearRegression()
    lr.fit(np.array(fdrop.iloc[:,1]).reshape(-1, 1),np.array(fdrop.iloc[:,0]))
    lr.predict(np.array(fake_num[np.isnan(fake_num[0])][1]).reshape(-1, 1))
Out[5]: array([ 6.,  8., 15.])

The part I want to replace is fake_num[np.isnan(fake_num[0])][0]so what I want is:

    Out[6]: 
     0    1
0  1.0  1.1
1  2.0  1.2
2  3.0  1.3
3  4.0  1.4
4  6.0  1.6
5  8.0  1.8
6  5.0  2.5

While I tried:

fake_num[np.isnan(fake_num[0])][0]=lr.predict(np.array(fake_num[np.isnan(fake_num.iloc[:,0])].iloc[:,1]).reshape(-1, 1))
fake_num
__main__:1: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
Out[11]: 
     0    1
0  1.0  1.1
1  2.0  1.2
2  3.0  1.3
3  4.0  1.4
4  NaN  1.6
5  NaN  1.8
6  NaN  2.5

And

    fake_num[np.isnan(fake_num.loc[:,0])].loc[:,0]=lr.predict(np.array(fake_num[np.isnan(fake_num.iloc[:,0])].iloc[:,1]).reshape(-1, 1))
fake_num
D:\Users\shan xu\Anaconda3\lib\site-packages\pandas\core\indexing.py:630: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  self.obj[item_labels[indexer[info_axis]]] = value
Out[12]: 
     0    1
0  1.0  1.1
1  2.0  1.2
2  3.0  1.3
3  4.0  1.4
4  NaN  1.6
5  NaN  1.8

And

    fake_num[np.isnan(fake_num.iloc[:,0])].iloc[:,0]=lr.predict(np.array(fake_num[np.isnan(fake_num.iloc[:,0])].iloc[:,1]).reshape(-1, 1))
fake_num
D:\Users\shan xu\Anaconda3\lib\site-packages\pandas\core\indexing.py:630: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  self.obj[item_labels[indexer[info_axis]]] = value
Out[12]: 
     0    1
0  1.0  1.1
1  2.0  1.2
2  3.0  1.3
3  4.0  1.4
4  NaN  1.6
5  NaN  1.8

what should I do to replace part of the dataframe with some values give its posiition. BTW, Since I need more details elaboration, any good tools, take fill na values with simple predictions models using other all non-na rows and other columns as input? Something like missforest in R.

1

1 Answer 1

1

Just call fit, and then use loc to assign back.

v = fake_num.dropna()
lr.fit(v[[1]], v[[0]])

m = fake_num[0].isna()
fake_num.loc[m, [0]] = lr.predict(fake_num.loc[m, [1]])

fake_num
      0    1
0   1.0  1.1
1   2.0  1.2
2   3.0  1.3
3   4.0  1.4
4   6.0  1.6
5   8.0  1.8
6  15.0  2.5
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.