What you want to implement is the API of a MutableSequence with the implementation of a doubly-linked-list.
To do that in Python, you should rely on collections.abc which can guide you through the process of implementing all required methods.
By example, a linked-list is actually a class inheriting from MutableSequence.
from collections.abc import MutableSequence
class LinkedList(MutableSequence):
pass
ll = LinkedList()
On instantiation of a class which has some abstract methods not yet written, you will get a TypeError which will guide you through which methods need to be implemented.
TypeError: Can't instantiate abstract class LinkedList with abstract methods __delitem__, __getitem__, __len__, __setitem__, insert
In particular, note that a list or a linked-list is not an iterator, it is an iterable. What this means is the __iter__ method should not return self and rely on __next__, it should instead return a brand new iterator on the content of the linked-list.
In other words, you can iterate only once through an iterator and multiple times through and iterable.
Full implementation
It turns out I have a full implementation of a doubly-linked-list implemented that way. You can have a look.
from collections.abc import MutableSequence
class LinkedList(MutableSequence):
class _Node:
def __init__(self, value, _next=None, _last=None):
self.value, self._next, self._last = value, _next, _last
def __str__(self):
return f'Node({self.value})'
def __init__(self, iterable=()):
self.start = None
self.last = None
empty = object()
iterable = iter(iterable)
first = next(iterable, empty)
if first is empty:
return
current = self._Node(first)
self.start, self.last = current, current
for value in iterable:
new_node = self._Node(value, _last=self.last)
self.last._next = new_node
self.last = new_node
def __len__(self):
if self.start is None:
return 0
else:
return sum(1 for _ in self)
def __iter_nodes(self):
current = self.start
while current is not None:
yield current
current = current._next
def __reversed_iter_nodes(self):
current = self.last
while current is not None:
yield current
current = current._last
def __iter__(self):
for node in self.__iter_nodes():
yield node.value
def __reversed__(self):
for node in self.__reversed_iter_nodes():
yield node.value
def __get_node(self, index):
if index >= 0:
for item in self.__iter_nodes():
if index == 0:
return item
index -= 1
else:
for item in self.__reversed_iter_nodes():
if index == 0:
return item
index += 1
raise IndexError
def __getitem__(self, index):
if index >= 0:
for item in self:
if index == 0:
return item.value
index -= 1
else:
for item in reversed(self):
if index == 0:
return item.value
index += 1
raise IndexError
def __setitem__(self, key, value):
self[key].value = value
def __delitem__(self, key):
node = self[key]
if node._last:
node._last._next = node._next
if node._next:
node._next._last = node._last
def insert(self, index, value):
if index > len(self):
self.last = self._Node(value, _last=self.last)
else:
where = self.__get_node(index)
_last = where._last
new_node = self._Node(value, _next=where, _last=_last)
if _last:
_last._next = new_node
else:
self.start = new_node
where._last = new_node
Example
ll = LinkedList(range(1, 5))
print(*ll)
print(*reversed(ll))
ll.insert(2, 'foo')
print(*ll)
Output
1 2 3 4
4 3 2 1
1 2 foo 3 4
NodeDLLclass so it can be properly indented.LinkedListIterator, instead of posting it as a picture, so we can easily run it and try it out ourselves?