I currently have a df in pandas with a variable called 'Dates' that records the data an complaint was filed.
data = pd.read_csv("filename.csv")
Dates
Initially Received
07-MAR-08
08-APR-08
19-MAY-08
As you can see there are missing dates between when complaints are filed, also multiple complaints may have been filed on the same day. Is there a way to fill in the missing days while keeping complaints that were filed on the same day the same?
I tried creating a new df with datetime and merging the dataframes together,
days = pd.date_range(start='01-JAN-2008', end='31-DEC-2017')
df = pd.DataFrame(data=days)
df.index = range(3653)
dates = pd.merge(days, data['Dates'], how='inner')
but I get the following error:
ValueError: can not merge DataFrame with instance of type <class
'pandas.tseries.index.DatetimeIndex'>
Here are the first four rows of data
