I'm creating manually a dictionary of features and numpy array.
columns = ['a', 'b', 'c', 'd']
features = {'a': df_train.values[:, 0],
'b': df_train.values[:, 1],
'c': df_train.values[:, 2],
'd': df_train.values[:, 3]}
df_train is a Pandas dataframe originated from pandas.read_csv()
I'm using this code to simplify it:
features = {c: df_train.values[:, i] for i, c in enumerate(columns)}
Is there a more Pythonic way? (dict with zip for example?)
dict(zip(columns, df_train.values.T))