Sorry I'm not very familiar with Scala, but I'm curious if this is possible and haven't been able to figure out how.
Basically, I want to create some convenience initializers that can generate a random sample of data (in this case a grid). The grid will always be filled with instances of a particular type (in this case a Location). But in different cases I might want grids filled with different subtypes of Location, e.g. Farm or City.
In Python, this would be trivial:
def fillCollection(klass, size):
return [klass() for _ in range(size)]
class City: pass
cities = fillCollection(City, 10)
I tried to do something similar in Scala but it does not work:
def fillGrid[T <: Location](size): Vector[T] = {
Vector.fill[T](size, size) {
T()
}
}
The compiler just says "not found: value T"
So, it it possible to approximate the above Python code in Scala? If not, what's the recommended way to handle this kind of situation? I could write an initializer for each subtype, but in my real code there's a decent amount of boilerplate overlap between them so I'd like to share code if possible.
The best workaround I've come up with so far is to pass a closure into the initializer (which seems to be how the fill method on Vectors already works), e.g.:
def fillGrid[T <: Location](withElem: => T, size: Int = 100): Vector[T] = {
Vector.fill[T](n1 = size, n2 = size)(withElem)
}
That's not a huge inconvenience, but it makes me curious why Scala doesn't support the "simpler" Python-style construct (if it in fact doesn't). I sort of get why having a "fully generic" initializer could cause trouble, but in this case I can't see what the harm would be generically initializing instances that are all known to be subtypes of a given parent type.