0

I have defined the following symbolic matrix:

def DFT(d):    
    a = symbols('pi')    
    DFT = Matrix(d, d, lambda i,j: exp((2*I/d)*i*j*a))    
    return(DFT)

Now, I would like to simplify the exponential to the corresponding 1,-1,I,-I when its argument is an intiger or half integer value, but for the rest of the cases I would like to keep the symbolic expression. Is there any method that I could use? How should I do it?

Regards!

1 Answer 1

1

If I use the predefined symbol sympy.pi instead of a in the definition of DFT, it simplifies the values automatically:

In [27]: from sympy import *

In [28]: def DFT(d):    
    ...:     DFT = Matrix(d, d, lambda i,j: exp((2*I/d)*i*j*pi))
    ...:     return(DFT)
    ...: 

In [29]: DFT(4)
Out[29]: 
Matrix([
[1,  1,  1,  1],
[1,  I, -1, -I],
[1, -1,  1, -1],
[1, -I, -1,  I]])

In [30]: DFT(6)
Out[30]: 
Matrix([
[1,             1,              1,  1,              1,              1],
[1,   exp(I*pi/3),  exp(2*I*pi/3), -1,  exp(4*I*pi/3),  exp(5*I*pi/3)],
[1, exp(2*I*pi/3),  exp(4*I*pi/3),  1,  exp(8*I*pi/3), exp(10*I*pi/3)],
[1,            -1,              1, -1,              1,             -1],
[1, exp(4*I*pi/3),  exp(8*I*pi/3),  1, exp(16*I*pi/3), exp(20*I*pi/3)],
[1, exp(5*I*pi/3), exp(10*I*pi/3), -1, exp(20*I*pi/3), exp(25*I*pi/3)]])

In [31]: DFT(8)
Out[31]: 
Matrix([
[1,             1,  1,              1,  1,              1,  1,              1],
[1,   exp(I*pi/4),  I,  exp(3*I*pi/4), -1,  exp(5*I*pi/4), -I,  exp(7*I*pi/4)],
[1,             I, -1,             -I,  1,              I, -1,             -I],
[1, exp(3*I*pi/4), -I,  exp(9*I*pi/4), -1, exp(15*I*pi/4),  I, exp(21*I*pi/4)],
[1,            -1,  1,             -1,  1,             -1,  1,             -1],
[1, exp(5*I*pi/4),  I, exp(15*I*pi/4), -1, exp(25*I*pi/4), -I, exp(35*I*pi/4)],
[1,            -I, -1,              I,  1,             -I, -1,              I],
[1, exp(7*I*pi/4), -I, exp(21*I*pi/4), -1, exp(35*I*pi/4),  I, exp(49*I*pi/4)]])
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.