I have a numpy array of these dimensions
data.shape
(categories, models, types, events, days) -> (10, 11, 50, 100, 14)
Now, I want to find the maximum of the 14 days for all events for each of the 11 models. But I am not sure how to do it in the numpy way. I am not sure if this is correct.
modelmax = []
nmodels = 11
for modelcount in range(nmodels):
modelmax.append(np.max(data[0][modelcount][:], axis=2))
As an example, for the 100 events:
np.max(data, axis=4)[0][0][0])
[ 3.9264417 3.3029506 3.0707457 3.6646023 1.7508441 3.1634364
6.195052 1.5353022 1.8033538 1.4508389 1.3882699 2.0849068
3.654939 6.6364765 3.92829 6.6467876 1.5442419 4.639682
9.361191 5.261462 1.7438816 5.6970205 2.4356377 1.6073244
2.6177561 6.886767 3.890399 2.8880894 1.9826577 1.0888597
4.3763924 3.8597727 1.790302 1.0277777 6.270729 9.311213
2.318774 2.9298437 1.139397 0.9598383 3.0489902 1.6736581
1.3983868 2.0979824 4.169757 1.0739225 1.5311266 1.4676268
1.726325 1.8057758 2.226462 2.6197987 4.49518 2.3042605
5.7164993 1.182242 1.5107205 2.2920077 2.205539 1.4702082
2.154468 2.0641963 4.9628353 1.9987459 2.1360166 1.7073958
1.943267 7.5767093 1.3124634 2.2648168 1.1504744 3.210688
2.6720855 2.998225 4.365262 3.5410352 10.765423 4.6292825
3.1789696 0.92157686 1.663245 1.5835482 3.1070056 1.6918416
8.086268 3.7994847 2.4314868 1.6471033 1.1688241 1.7820593
3.3509188 1.3092748 3.7915008 1.018912 3.2404447 1.596657
2.0869658 2.6753283 2.1096318 8.786542 ]
I have also tried
np.max(dryflow[0][:], axis=3)
But these multidimensional indices are leaving me confused.
categoriesandtypes?logof the 14 day maximums and find the overall maximum and minimum for every type...Hope it explains a bit..numpyit is better to use[0,0,0,0]style of indexing rather than[0][0][0][0]. Sometimes they produce the same thing, but sometimes the differences give problems. Also with arrays[:]does nothing for you.[:]doing nothing..