I found here: exponential sum using recursion.python
Exactly the same problem with the same conditions to implement.
A brief description: We have started studying recursion and got some questions to solve using only recursion without any loop.
So we are asked to write a function calculating the exponential sum.
So here are my tries:
def exp_n_x(n, x):
if n <= 0:
return 1
return (x/n)*exp_n_x(n-1, x)
It actually only calculates the n'th one, without summing up the others to i=0.
I tried to make the function sum every exponential element so:
def exp_n_x(n, x):
if n <= 0:
return 1
sum = (x/n)*exp_n_x(n-1, x)
n = n - 1
return sum + (x/n)*exp_n_x(n-1, x)
But it doesn't help me... Thanks.
sigma x to the i over i factorialnis effectivelyiin the equation of your link, which decreases from its initial value to 0 (opposite but equivalent to the summation ofifrom0ton).