3

I have a pandas dataframe as:

df3 = pd.DataFrame({
'T': [11.0,22.0,11.23,20.03],
'v2': [11.0,13.0,55.1,33.0],
'v3' : [112.1,2.0,2.1,366.0],
'v4': [np.nan, "blue", 1.0, 2.0]
 })

       T    v2     v3    v4
0  11.00  11.0  112.1   NaN
1  22.00  13.0    2.0  blue
2  11.23  55.1    2.1   1.0
3  20.03  33.0  366.0   2.0

and I must have:

    T       v2     v3    v4
0  11     11.0  112.1   NaN
1  22     13.0    2.0  blue
2  11.23  55.1    2.1   1.0
3  20.03  33.0  366.0   2.0

So I have to transform float to integer only on 'T.'

1
  • can you add more content to the question. Commented Dec 13, 2018 at 9:20

3 Answers 3

5

It is possible, but a bit hack, because is necessary converting to object:

df3['T'] = np.array([int(x) if int(x) == x else x for x in df3['T']], dtype=object)
print (df3)
       T    v2     v3    v4
0     11  11.0  112.1   NaN
1     22  13.0    2.0  blue
2  11.23  55.1    2.1     1
3  20.03  33.0  366.0     2

print (df3['T'].tolist())
[11, 22, 11.23, 20.03]

If possible missing values:

df3 = pd.DataFrame({
'T': [11.0,22.0,11.23,np.nan],
'v2': [11.0,13.0,55.1,33.0],
'v3' : [112.1,2.0,2.1,366.0],
'v4': [np.nan, "blue", 1.0, 2.0]
 })


df3['T'] = np.array([int(x) if x % 1 == 0 else x for x in df3['T']], dtype=object)
print (df3)
       T    v2     v3    v4
0     11  11.0  112.1   NaN
1     22  13.0    2.0  blue
2  11.23  55.1    2.1     1
3    NaN  33.0  366.0     2

print (df3['T'].tolist())
[11, 22, 11.23, nan]
Sign up to request clarification or add additional context in comments.

Comments

0

Using the same idea of @jezrael but with is_integer:

import numpy as np
import pandas as pd

df3 = pd.DataFrame({
    'T': [11.0, 22.0, 11.23, 20.03],
    'v2': [11.0, 13.0, 55.1, 33.0],
    'v3': [112.1, 2.0, 2.1, 366.0],
    'v4': [np.nan, "blue", 1.0, 2.0]
})

df3['T'] = np.array([int(x) if float(x).is_integer() else x for x in df3['T']], dtype=object)

print(df3)

Output

T    v2     v3    v4
0     11  11.0  112.1   NaN
1     22  13.0    2.0  blue
2  11.23  55.1    2.1     1
3  20.03  33.0  366.0     2

Or using numpy.where with numpy.fmod:

mask = np.fmod(df3['T'].values, 1) == 0
df3['T'] = np.where(mask, df3['T'].values.astype(np.int), df3['T']).astype(dtype=object)
print(df3)

Comments

0

Or why not:

df3=df3.apply(lambda x: int(x) if int(x)==x and x==x and isinstance(x,float) else x)

And now:

print(df3)

Is gonna be expected output:

    T       v2     v3    v4
0  11     11.0  112.1   NaN
1  22     13.0    2.0  blue
2  11.23  55.1    2.1   1.0
3  20.03  33.0  366.0   2.0

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.