1

Error I need to extract these two columns 'asin' and 'title' from below json. But the nested structure is not allowing to use read_json function in order to read this json file into a pandas dataframe.

  {
  "asin": "0000031852",
  "title": "Girls Ballet Tutu Zebra Hot Pink",
  "price": 3.17,
  "imUrl": "http://ecx.images-sigma.com/images/I/51fAmVkTbyL._SY300_.jpg",
  "related":
  {
    "also_bought": ["B00JHONN1S", "B002BZX8Z6", "B00D2K1M3O", "0000031909", "B00613WDTQ", "B00D0WDS9A", "B00D0GCI8S", "0000031895", "B003AVKOP2", "B003AVEU6G", "B003IEDM9Q", "B002R0FA24", "B00D23MC6W", "B00D2K0PA0", "B00538F5OK", "B00CEV86I6", "B002R0FABA", "B00D10CLVW", "B003AVNY6I", "B002GZGI4E", "B001T9NUFS", "B002R0F7FE", "B00E1YRI4C", "B008UBQZKU", "B00D103F8U", "B007R2RM8W"],
    "also_viewed": ["B002BZX8Z6", "B00JHONN1S", "B008F0SU0Y", "B00D23MC6W", "B00AFDOPDA", "B00E1YRI4C", "B002GZGI4E", "B003AVKOP2", "B00D9C1WBM", "B00CEV8366", "B00CEUX0D8", "B0079ME3KU", "B00CEUWY8K", "B004FOEEHC", "0000031895", "B00BC4GY9Y", "B003XRKA7A", "B00K18LKX2", "B00EM7KAG6", "B00AMQ17JA", "B00D9C32NI", "B002C3Y6WG", "B00JLL4L5Y", "B003AVNY6I", "B008UBQZKU", "B00D0WDS9A", "B00613WDTQ", "B00538F5OK", "B005C4Y4F6", "B004LHZ1NY", "B00CPHX76U", "B00CEUWUZC", "B00IJVASUE", "B00GOR07RE", "B00J2GTM0W", "B00JHNSNSM", "B003IEDM9Q", "B00CYBU84G", "B008VV8NSQ", "B00CYBULSO", "B00I2UHSZA", "B005F50FXC", "B007LCQI3S", "B00DP68AVW", "B009RXWNSI", "B003AVEU6G", "B00HSOJB9M", "B00EHAGZNA", "B0046W9T8C", "B00E79VW6Q", "B00D10CLVW", "B00B0AVO54", "B00E95LC8Q", "B00GOR92SO", "B007ZN5Y56", "B00AL2569W", "B00B608000", "B008F0SMUC", "B00BFXLZ8M"],
    "bought_together": ["B002BZX8Z6"]
  },
  "salesRank": {"Toys & Games": 211836},
  "brand": "Coxlures",
  "categories": [["Sports & Outdoors", "Other Sports", "Dance"]]
}
2
  • Do you mean that your source file contains multiple instances of such JSON objects, and from each one you want to extract the asin and title fields? Commented Feb 11, 2019 at 12:33
  • That's right, Marcus. The goal is to extract all but only asin and title fields from multiple instances of json. Commented Feb 12, 2019 at 5:41

1 Answer 1

1

You can easily load the asin and title values from this JSON into a dataframe.

import pandas as pd
import json

j = json.loads("""{
  "asin": "0000031852",
  "title": "Girls Ballet Tutu Zebra Hot Pink",
  "price": 3.17,
  "imUrl": "http://ecx.images-sigma.com/images/I/51fAmVkTbyL._SY300_.jpg",
  "related":
  {
    "also_bought": ["B00JHONN1S", "B002BZX8Z6", "B00D2K1M3O", "0000031909", "B00613WDTQ", "B00D0WDS9A", "B00D0GCI8S", "0000031895", "B003AVKOP2", "B003AVEU6G", "B003IEDM9Q", "B002R0FA24", "B00D23MC6W", "B00D2K0PA0", "B00538F5OK", "B00CEV86I6", "B002R0FABA", "B00D10CLVW", "B003AVNY6I", "B002GZGI4E", "B001T9NUFS", "B002R0F7FE", "B00E1YRI4C", "B008UBQZKU", "B00D103F8U", "B007R2RM8W"],
    "also_viewed": ["B002BZX8Z6", "B00JHONN1S", "B008F0SU0Y", "B00D23MC6W", "B00AFDOPDA", "B00E1YRI4C", "B002GZGI4E", "B003AVKOP2", "B00D9C1WBM", "B00CEV8366", "B00CEUX0D8", "B0079ME3KU", "B00CEUWY8K", "B004FOEEHC", "0000031895", "B00BC4GY9Y", "B003XRKA7A", "B00K18LKX2", "B00EM7KAG6", "B00AMQ17JA", "B00D9C32NI", "B002C3Y6WG", "B00JLL4L5Y", "B003AVNY6I", "B008UBQZKU", "B00D0WDS9A", "B00613WDTQ", "B00538F5OK", "B005C4Y4F6", "B004LHZ1NY", "B00CPHX76U", "B00CEUWUZC", "B00IJVASUE", "B00GOR07RE", "B00J2GTM0W", "B00JHNSNSM", "B003IEDM9Q", "B00CYBU84G", "B008VV8NSQ", "B00CYBULSO", "B00I2UHSZA", "B005F50FXC", "B007LCQI3S", "B00DP68AVW", "B009RXWNSI", "B003AVEU6G", "B00HSOJB9M", "B00EHAGZNA", "B0046W9T8C", "B00E79VW6Q", "B00D10CLVW", "B00B0AVO54", "B00E95LC8Q", "B00GOR92SO", "B007ZN5Y56", "B00AL2569W", "B00B608000", "B008F0SMUC", "B00BFXLZ8M"],
    "bought_together": ["B002BZX8Z6"]
  },
  "salesRank": {"Toys & Games": 211836},
  "brand": "Coxlures",
  "categories": [["Sports & Outdoors", "Other Sports", "Dance"]]
}""")
df = pd.DataFrame({"asin":[j["asin"]],"title":[j["title"]],})

Note that there is only one value of each so we wrap it in a list. If you had an array of JSON objects like the one you provided as an example, you can extract just those values:

asins = [x["asin"] for x in j]
titles = [x["title"] for x in j]
df = pd.DataFrame({"asin":asins,"title":titles,})

Note that there is almost certainly a faster way to extract titles and asins based on how the data is structured.

Sign up to request clarification or add additional context in comments.

1 Comment

Thanks for that Charles. However, when I tried to implement what you suggested I still got an error. I have attached the screenshot as well.

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.