Yes, as stated before, this is the knapsack problem and I would choose to use linear programming.
The key to this problem is storing data so that you do not need to recompute things more than once (if enough memory is available). There are two general ways to go about linear programming: top-down, and bottom - up. This one is a bottom up problem.
(in general) Find base case values, what is the most optimal object to select for a small case. Then build on this. If we allow ourselves to spend more money what is the best combination of objects for that small increment in money. Possibilities could be taking more of what you previously had, taking one new object and replacing the old one, taking another small object that will still keep you under your budget etc.
Like I said, the main idea is to not recompute values. If you follow this pattern, you will get to a high number and find that in order to buy X amount of dollars worth of goods, the best solution is combining what you had for two smaller cases.