I have dfs such as the following:
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
df = pd.DataFrame({
'Country': ["A", "B", "C", "D", "E", "F", "G"],
'Answer declined': [0.000000, 0.000000, 0.000000, 0.000667, 0.000833, 0.000833, 0.000000],
"Don't know": [0.003333, 0.000000, 0.000000, 0.001333, 0.001667, 0.000000, 0.000000],
"No": [0.769167, 0.843333, 0.762000, 0.666000, 0.721667, 0.721667, 0.775833],
"Yes": [0.227500, 0.156667, 0.238000, 0.332000, 0.275833, 0.277500, 0.224167]}, )
df.set_index("Country", inplace = True)
As I have multiple such dfs from which I want to create plots from, I have defined the below function:
def bar_plot(plot_df):
N = len(plot_df) # number of groups
ind = np.arange(N) # x locations for the groups
width = 0.35 # width of bars
p_s = []
p_s.append(plt.bar(ind, plot_df.iloc[:,0], width))
for i in range(1,len(plot_df.columns)):
p_s.append(plt.bar(ind, plot_df.iloc[:,i], width,
bottom=np.sum(plot_df.iloc[:,:i], axis=1)))
plt.ylabel('[%]')
plt.title('Responses by country')
x_ticks_names = tuple([item for item in plot_df.index])
plt.xticks(ind, x_ticks_names)
plt.yticks(np.arange(0, 1.1, 0.1)) # ticks from, to, steps
#if num_y_cats % 3 == 0: ncol = num_y_cats / 3
#else: ncol = num_y_cats % 3
ncol = 3
plt.legend(p_s, plot_df.columns,
bbox_to_anchor = (0.5, -0.25), # to the left; to the top
loc = 'lower center',
ncol = ncol,
borderaxespad = 0)
plt.show()
plt.close()
calling the function (bar_plot(df)) gives the desired plot. However, I want to manipulate/ fine tune the plots and therefore want to embed the plot into mpl figures and axes but have failed to do so, since I can't figure out how to make it work with the lines p_s = [] and p_s.append(...).
Could someone help me out where the fig = plt.figure(), fig.add_axes(), and ax1 = fig.add_subplot(111) would go?
Thanks a lot! :)