2

I want to add a new column tidy_tweet to the existing .csv file which implements the remove_pattern function

def remove_pattern(input_txt, pattern):
    r = re.findall(pattern, input_txt)
    for i in r:
        input_txt = re.sub(i, '', input_txt)
    return input_txt   

I wrote these lines of code

data  = pd.read_csv(filepath_or_buffer='stockerbot-export.csv', error_bad_lines=False)
data['tidy_tweet'] = np.vectorize(remove_pattern)(data['text'], "@[\w]*")

I am getting the following error

MemoryError                               Traceback (most recent call last)
<ipython-input-15-d6e7e950d5b9> in <module>()
----> 1 data['tidy_tweet'] = np.vectorize(remove_pattern)(data['text'], "@[\w]*")

~\Anaconda3\lib\site-packages\numpy\lib\function_base.py in __call__(self, *args, **kwargs)
   1970             vargs.extend([kwargs[_n] for _n in names])
   1971 
-> 1972         return self._vectorize_call(func=func, args=vargs)
   1973 
   1974     def _get_ufunc_and_otypes(self, func, args):

~\Anaconda3\lib\site-packages\numpy\lib\function_base.py in _vectorize_call(self, func, args)
   2049 
   2050             if ufunc.nout == 1:
-> 2051                 res = array(outputs, copy=False, subok=True, dtype=otypes[0])
   2052             else:
   2053                 res = tuple([array(x, copy=False, subok=True, dtype=t)

MemoryError: 

I can't understand the error. Need help.

1 Answer 1

1

The error is self explanatory, you are running out of memory as you are working with a huge amount of data and doing loop over it. There is a simpler solution give it a try.

data['tidy_tweet'] = data['text'].str.replace('@[\w]*', '',regex=True)

remove regex=True if you are using older version of pandas i.e. older than 0.23.0

documentation

Example:

enter image description here

Sign up to request clarification or add additional context in comments.

1 Comment

Would you mind adding an example please ? Thank you.

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.