1

I'm trying to apply the Sobel operator to a simple binary image, but the resulting gradient is flipped (when comparing to the output of scipy's signal.convolve2d function.

from scipy import signal
import numpy as np
import matplotlib.pyplot as plt


def sobelx_homemade(arr, kx):
    offset = 1
    sx = np.zeros(arr.shape)
    for y in range(offset, arr.shape[0] - offset):
        for x in range(offset, arr.shape[1] - offset):
            rstart, rend = y-offset, y+offset+1
            cstart, cend = x-offset, x+offset+1
            w = arr[rstart:rend, cstart:cend]
            Ix = kx * w
            sx[y, x] = Ix.sum()
    return sx

A = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0],
                   [0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0],
                   [0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0],
                   [0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0],
                   [0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0],
                   [0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])


kx = np.array([
    [-1, 0, 1],
    [-2, 0, 2],
    [-1, 0, 1]
], dtype=np.float)

ky = np.array([
    [1, 2, 1], 
    [0, 0, 0], 
    [-1, -2, -1]
], dtype = np.float)

Gx = signal.convolve2d(A, kx, boundary='symm', mode='same')
Gy = signal.convolve2d(A, ky, boundary='symm', mode='same')

# calculate homemade sobel x gradient
myGx = sobelx_homemade(A, kx)

plt.subplot(131)
plt.title("Original")
plt.imshow(A, cmap="gray")
plt.subplot(132)
plt.title("Gx")
plt.imshow(Gx, cmap="gray")
plt.subplot(133)
plt.title("My Gx")
plt.imshow(myGx, cmap="gray")

output of script, gx and my gx should match

I expect the images labeled "Gx" and "My Gx" to be identical.

1 Answer 1

1

So, it turns out that a true convolution flips the kernel/filter matrix, which explains the flipped result.

This video from Andrew Ng, explains the differences between textbook convolution and cross-correlation commonly used in machine learning style image processing: https://youtu.be/tQYZaDn_kSg?t=308

Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.