TL;DR
I'm trying to understand how this:
satisfy :: (Char -> Bool) -> Parser Char
satisfy pred = PsrOf p
where
p (c:cs) | pred c = Just (cs, c)
p _ = Nothing
Is equivalent to this:
satisfy :: (Char -> Bool) -> Parser Char
satisfy pred = do
c <- anyChar
if pred c then return c else empty
Context
This is a snippet from some lecture notes on Haskell parsing, which I'm trying to understand:
import Control.Applicative
import Data.Char
import Data.Functor
import Data.List
newtype Parser a = PsrOf (String -> Maybe (String, a))
-- Function from input string to:
--
-- * Nothing, if failure (syntax error);
-- * Just (unconsumed input, answer), if success.
dePsr :: Parser a -> String -> Maybe (String, a)
dePsr (PsrOf p) = p
-- Monadic Parsing in Haskell uses [] instead of Maybe to support ambiguous
-- grammars and multiple answers.
-- | Use a parser on an input string.
runParser :: Parser a -> String -> Maybe a
runParser (PsrOf p) inp = case p inp of
Nothing -> Nothing
Just (_, a) -> Just a
-- OR: fmap (\(_,a) -> a) (p inp)
-- | Read a character and return. Failure if input is empty.
anyChar :: Parser Char
anyChar = PsrOf p
where
p "" = Nothing
p (c:cs) = Just (cs, c)
-- | Read a character and check against the given character.
char :: Char -> Parser Char
-- char wanted = PsrOf p
-- where
-- p (c:cs) | c == wanted = Just (cs, c)
-- p _ = Nothing
char wanted = satisfy (\c -> c == wanted) -- (== wanted)
-- | Read a character and check against the given predicate.
satisfy :: (Char -> Bool) -> Parser Char
satisfy pred = PsrOf p
where
p (c:cs) | pred c = Just (cs, c)
p _ = Nothing
-- Could also be:
-- satisfy pred = do
-- c <- anyChar
-- if pred c then return c else empty
instance Monad Parser where
-- return :: a -> Parser a
return = pure
-- (>>=) :: Parser a -> (a -> Parser b) -> Parser b
PsrOf p1 >>= k = PsrOf q
where
q inp = case p1 inp of
Nothing -> Nothing
Just (rest, a) -> dePsr (k a) rest
I understand everything up until the last bit of the Monad definition, specifically I don't understand how the following line returns something of type Parser b as is required by the (>>=) definition:
Just (rest, a) -> dePsr (k a) rest
It's difficult for me grasp what the Monad definition means without an example. Thankfully, we have one in the alternate version of the satisfy function, which uses do-notation (which of course means the Monad is being called). I really don't understand do-notation yet, so here's the desugared version of satisfy:
satisfy pred = do
anyChar >>= (c ->
if pred c then return c else empty)
So based on the first line of our (>>=)definition, which is
PsrOf p1 >>= k = PsrOf q
We have anyChar as our PsrOf p1 and (c -> if pred c then return c else empty) as our k. What I don't get is how in dePsr (k a) rest that (k a) returns a Parser (at least it shold, otherwise calling dePsr on it wouldn't make sense). This is made more confusing by the presence of rest. Even if (k a) returned a Parser, calling dePsr would extract the underlying function from the returned Parser and pass rest to it as an input. This is definitely doesn't return something of type Parser b as required by the definition of (>>=). Clearly I'm misunderstanding something somewhere.
dePsr (k a) restis inside theqfunction. Theqfunction is not directly given as a result of... >>= .... The result of... >>= ...isPsrOf q, notq.khas typea -> Parser b(this can be seen in the commented-out type signature). So, if you givekanavalue, it will give you aParser bvalue. This is whyk a :: Parser b.