1

i have dataframe like below

A B C D E F G H G H  I  J  K
1 2 3 4 5 6 7 8 9 10 11 12 13

and i want result like this

A B C D E F G H 
1 2 3 4 5 6 7 8 
1 2 3 4 5 6 7 9
1 2 3 4 5 6 7 10
1 2 3 4 5 6 7 11
1 2 3 4 5 6 7 12
1 2 3 4 5 6 7 13

like a result column 'G~K' is under column 'H'

how can i do this?

4 Answers 4

2

You need to adjust your columns by using cummax , then after melt, we create additional key with cumcount, then just do reshape here, I am using unstack , you can using pivot , pivot_table

s=pd.Series(df.columns)
s[(s>='H').cummax()==1]='H'
df.columns=s
df=df.melt()

yourdf=df.set_index(['variable',df.groupby('variable').cumcount()]).\
          value.unstack(0).ffill()
yourdf
variable    A    B    C    D    E    F    G     H
0         1.0  2.0  3.0  4.0  5.0  6.0  7.0   8.0
1         1.0  2.0  3.0  4.0  5.0  6.0  7.0   9.0
2         1.0  2.0  3.0  4.0  5.0  6.0  7.0  10.0
3         1.0  2.0  3.0  4.0  5.0  6.0  7.0  11.0
4         1.0  2.0  3.0  4.0  5.0  6.0  7.0  12.0
5         1.0  2.0  3.0  4.0  5.0  6.0  7.0  13.0
Sign up to request clarification or add additional context in comments.

Comments

0

I hope this would give you some help

import pandas as pd

df = pd.DataFrame([list(range(1,14))])
df.columns = ('A','B','C','D','E','F','G','H','G','H','I','J','K')

print('starting data frame:')
print(df)


df1 = df.iloc[:,0:7]
df1 = df1.append([df1]*(len(df.iloc[:,7:].T)-1))
df1.insert(df1.shape[1],'H',list(df.iloc[:,7:].values[0]))

print('result:')
print(df1)

Comments

0
letters = list("ABCDEFGHIJKLM")
df = pd.DataFrame([np.arange(1, len(letters) + 1)], columns=letters)
df = pd.concat([df.iloc[:, :7]] * (len(letters) - 7)).assign(H=df[letters[7:]].values[0])
df = df.reset_index(drop=True)
df

gives you

    A   B   C   D   E   F   G   H
0   1   2   3   4   5   6   7   8
1   1   2   3   4   5   6   7   9
2   1   2   3   4   5   6   7   10
3   1   2   3   4   5   6   7   11
4   1   2   3   4   5   6   7   12
5   1   2   3   4   5   6   7   13

Comments

0

Your data has some duplicates in columns name, so melt will fail. However, you could change columns name and then apply melt

In [166]: df
Out[166]:
   A  B  C  D  E  F  G  H  G   H   I   J   K
0  1  2  3  4  5  6  7  8  9  10  11  12  13

Duplicates in column name 'G' and 'H'. Just change those to 'GG', 'HH'. Finally, apply melt

In [167]: df.columns = ('A','B','C','D','E','F','G','H','GG','HH','I','J','K')

In [168]: df
Out[168]:
   A  B  C  D  E  F  G  H  GG  HH   I   J   K
0  1  2  3  4  5  6  7  8   9  10  11  12  13

In [169]: df.melt(id_vars=df.columns.tolist()[0:7], value_name='H').drop('variable', 1)
Out[169]:
   A  B  C  D  E  F  G   H
0  1  2  3  4  5  6  7   8
1  1  2  3  4  5  6  7   9
2  1  2  3  4  5  6  7  10
3  1  2  3  4  5  6  7  11
4  1  2  3  4  5  6  7  12
5  1  2  3  4  5  6  7  13

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.