I'm assuming that model object is from the MATLAB libsvm interface, which would make it a MATLAB struct and not a svm_model object. AFAIK there is not a direct conversion, but you should be able to read the fields from the struct, which you may be able to use for a python svm_model object (not 100% on this; I haven't used the python API much).
model_parameters = model['Parameters']
model_nr_class = model['nr_class']
model_total_sv = model['totalSV']
model_rho = model['rho']
model_label = model['Label']
model_sv_indices = model['sv_indices']
model_prob_a = model['ProbA']
model_prob_b = model['ProbB']
model_n_sv = model['nSV']
model_sv_coef = model['sv_coef']
model_svs = model['SVs']
The most painful way to generate this, if you can't find a way in python, would be to move the MATLAB struct values to a ctypes struct then use toPyModel (python API) to convert it to a python svm_model.
struct svm_model
{
struct svm_parameter param; /* parameter */
int nr_class; /* number of classes, = 2 in regression/one class svm */
int l; /* total #SV */
struct svm_node **SV; /* SVs (SV[l]) */
double **sv_coef; /* coefficients for SVs in decision functions (sv_coef[k-1][l]) */
double *rho; /* constants in decision functions (rho[k*(k-1)/2]) */
double *probA; /* pairwise probability information */
double *probB;
int *sv_indices; /* sv_indices[0,...,nSV-1] are values in [1,...,num_traning_data] to indicate SVs in the training set */
/* for classification only */
int *label; /* label of each class (label[k]) */
int *nSV; /* number of SVs for each class (nSV[k]) */
/* nSV[0] + nSV[1] + ... + nSV[k-1] = l */
/* XXX */
int free_sv; /* 1 if svm_model is created by svm_load_model*/
/* 0 if svm_model is created by svm_train */
};