1

I want to cluster non-zero locations in a NumPy 2D array for MSER detection. Then I want to find the number of points in each cluster and remove those clusters which do not have number of points between some x and y (10 and 300).

I have tried clustering them by searching with neighbouring points but the method fails for concave-shaped non-zero clusters.

[[0, 1, 0, 0, 1],
 [0, 1, 1, 1, 1],
 [0, 0, 0, 0, 0],
 [1, 1, 0, 1, 1],
 [1, 0, 0, 1, 1]]

should output, for x=4 and y=5 (both included)

[[0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 0, 1, 1],
 [0, 0, 0, 1, 1]]

1 Answer 1

2

I'm not sure I have understood your question correctly, but I think scikit-image's label and regionprops could get the job done.

In [6]: import numpy as np

In [7]: from skimage import measure, regionprops

In [8]: img = np.array([[0, 7, 0, 0, 7],
   ...:                 [0, 9, 1, 1, 4], 
   ...:                 [0, 0, 0, 0, 0], 
   ...:                 [2, 1, 0, 2, 1],
   ...:                 [1, 0, 0, 6, 4]])
   ...: 

In [9]: arr = measure.label(img > 0)

In [10]: arr
Out[10]: 
array([[0, 1, 0, 0, 1],
       [0, 1, 1, 1, 1],
       [0, 0, 0, 0, 0],
       [2, 2, 0, 3, 3],
       [2, 0, 0, 3, 3]])

In [11]: print('Label\t# pixels')
    ...: for region in measure.regionprops(arr):
    ...:     print(f"{region['label']}\t{region['area']}")
    ...:
Label   # pixels
1       6
2       3
3       4
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.