2

I have a file where multiple values are null, i need to change the values only where values are present and keep null values. Below is what i am trying but it is changing Null values (?) also. Please suggest what can be done.

Input File

A           B         C
XC123     CXW12     3.43
XC123       ?       11.44
CQ123     AB123     21.23
XC781       ?       44.22
SC568     AB123     2.12
SC568       ?       32.43
DC743     CXW12     324.78
XC123       ?       -6432.93

Expected Output File:

A       B         C
A0      B0      3.43
A0              11.44
A1      B1      21.23
A2              44.22
A3      B1      2.12
A3              32.43
A4      B0      324.78
A0              -6432.93

Code:

df=pd.read_csv('file.csv')

df_mask=pd.DataFrame({
            'A':['A{}'.format(i) for i in list(pd.factorize(df['A'])[0])],
            'B':['B{}'.format(i) for i in list(pd.factorize(df['B'])[0])],
            'C':df['C'].values.tolist(),
            })

df_mask.to_csv(finalOutput, sep=',', index=False)

1 Answer 1

3

Idea is use na_values parameter in read_csv for convert ? to mising values, then factorize by default return -1 for them, so added if-else statement:

df=pd.read_csv('file.csv', na_values=['?'])

df_mask=pd.DataFrame({
            'A':['A{}'.format(i) if i != -1 else '' for i in (pd.factorize(df['A'])[0])],
            'B':['B{}'.format(i) if i != -1 else ''  for i in (pd.factorize(df['B'])[0])],
            'C':df['C'].values.tolist(),
            })

print (df_mask)
    A   B        C
0  A0  B0     3.43
1  A0        11.44
2  A1  B1    21.23
3  A2        44.22
4  A3  B1     2.12
5  A3        32.43
6  A4  B0   324.78
7  A0     -6432.93

Another idea is use numpy.where:

a = pd.Series(pd.factorize(df['A'])[0])
b = pd.Series(pd.factorize(df['B'])[0])
df_mask=pd.DataFrame({
            'A':np.where(a != -1, 'A' + a.astype(str), ''),
            'B':np.where(b != -1, 'B' + b.astype(str), ''),
            'C':df['C'].values,
            })

print (df_mask)
    A   B        C
0  A0  B0     3.43
1  A0        11.44
2  A1  B1    21.23
3  A2        44.22
4  A3  B1     2.12
5  A3        32.43
6  A4  B0   324.78
7  A0     -6432.93
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.