JSON STR:
{
"PurchaseId": "Pur-001",
"Orders": [{
"id": "154",
"isOnline": false,
"Store_location": {
"Order-Date": "2019-06-04T07:35:00"
},
"Store_Network": [{
"Network_Domain": "Food_Processing"
}]
}],
"Sales": [{
"id": "1856",
"SalesLoads": [
1000,
3000,
5000
],
"Network": [{
"id": "London_Store",
"history": [
0,
1,
2,
0,
0,
0,
0,
0
],
"Leads": {
"From": "Mgmt-Dept",
"time": "34hrs"
}
}]
}]
}
My code so far:
import pandas.io.json as pd_json
data = pd_json.loads(json_str)
df=pd_json.json_normalize(data, record_path='loads')
I've tried JSON_Normalize but unable to load this JSON string into dataframe. Is it possible to do it using JSON Normalize or is there any other optimized solution available.

_recursive_extract(obj[path[0]], path[1:], TypeError: string indices must be integersin the middle ofjson_normalize