Right now I have code where some function func executes the way I want it to when I give it specific arguments in its definition (so I make it func[x1_,x2_]:=... and then later I make it func[x1_,x2_,x3_]:=... without changing anything else and it works the way I would like it to). Is there a way to automatically substitute whatever arguments I specify for this function?
UPDATE:
I haven't isolated the problem code yet, but this code here does not do what I want:
(* Clear all stuff each time before running, just to be safe! *)
\
Clear["Global`*"]
data = {{238.2, 0.049}, {246.8, 0.055}, {255.8, 0.059}, {267.5,
0.063}, {280.5, 0.063}, {294.3, 0.066}, {307.7, 0.069}, {318.2,
0.069}};
errors = {{x1, 0.004}, {x2, 0.005}};
getX[x1_, x2_] := 1/x2^2
getY[x__] =
Evaluate[Simplify[
Sqrt[Sum[(D[getX[x], errors[[i]][[1]]] errors[[i]][[2]])^2, {i,
Length[errors]}]]]]
map[action_, list_] := action @@@ list
y = map[getY, data];
y
getY[2, 3]
This code here does: (gives {67.9989, 48.0841, 38.9524, 31.994, 31.994, 27.8265, 24.3525, 24.3525} for y)
(* Clear all stuff each time before running, just to be safe! *) \ Clear["Global`*"]
data = {{238.2, 0.049}, {246.8,
0.055}, {255.8, 0.059}, {267.5,
0.063}, {280.5, 0.063}, {294.3, 0.066}, {307.7, 0.069}, {318.2,
0.069}}; errors = {{x2, 0.004}, {x1, 0.005}};
getX[x1_, x2_] := 1/x2^2
getY[x1_, x2_] := Evaluate[Simplify[ Sqrt[Sum[(D[getX[x1, x2], errors[[i]][[1]]]
errors[[i]][[2]])^2, {i, Length[errors]}]]]]
map[action_, list_] := action @@@ list
y = map[getY, data]; y
getY[2, 3]
UPDATE 2:
My math:
I intend to take the square root of the sum of the squares of all the partial derivatives of the getX function. Thus the body of the getY function. Then I want to evaluate that expression for different values of x1 and x2. Thus I have the arguments for getY.
getY. Since,getXonly "understands" two variables, the expressiongetX[x]withingetYwill have problems. So, you need to define what you expect to get from applyinggetYto more than 2 variables, then you can determine what rolegetXmust play. For instance, given the list,{a,b,c}, is each term in the sum dependent on successive terms in the list, i.e. should you be summing over{{a,b},{b,c}}?getY[a,b,c]would result ingetX[a,b,c]which isn't evaluated as it isn't defined, which is the key to why your code is not evaluating correctly. I'd say more, but Sasha beat me to it.