Here's a simple approach:
- Convert image to grayscale
- Threshold to obtain binary image
- Perform morphological operations to smooth image
- Find contours and extract ROI
After converting to grayscale, we threshold to obtain a binary image

image = cv2.imread('1.png')
original = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 120, 255, cv2.THRESH_BINARY)[1]
Next we create a kernel and perform morphological operations to smooth the image. This step "breaks" the joints connecting the three rectangles by eroding the image

kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25,25))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=3)
From here we find contours and extract the ROI with numpy slicing. The bounding boxes for the desired rectangles are drawn on the original image

cnts = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
image_number = 0
for c in cnts:
x,y,w,h = cv2.boundingRect(c)
cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 3)
ROI = original[y:y+h, x:x+w]
cv2.imwrite("ROI_{}.png".format(image_number), ROI)
image_number += 1
Here's each individual saved ROI

Full code
import cv2
image = cv2.imread('1.png')
original = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 120, 255, cv2.THRESH_BINARY)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25,25))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=3)
cnts = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
image_number = 0
for c in cnts:
x,y,w,h = cv2.boundingRect(c)
cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 3)
ROI = original[y:y+h, x:x+w]
cv2.imwrite("ROI_{}.png".format(image_number), ROI)
image_number += 1
cv2.imshow('opening', opening)
cv2.imshow('thresh', thresh)
cv2.imshow('image', image)
cv2.waitKey()