1

Experts, i have a simple requirement but not able to find the function to achieve the goal.

I am using pyspark (spark 1.6 & Python 2.7) and have a simple pyspark dataframe column with certain values like-

1849adb0-gfhe6543-bduyre763ryi-hjdsgf87qwefdb-78a9f4811265_ABC
1849adb0-rdty4545y4-657u5h556-zsdcafdqwddqdas-78a9f4811265_1234
1849adb0-89o8iulk89o89-89876h5-432rebm787rrer-78a9f4811265_12345678

The common thing about these values is that there is a single "underscore" and after that there are certain characters (can be any number of characters). These are the characters i am interested to get in the output. I want to use a substring or regex function which will find the position of "underscore" in the column values and select "from underscore position +1" till the end of column value. So the output will look like a dataframe with values as-

ABC
1234
12345678

I tried using sub-string but could find anything to "index" the "underscore"

Thanks!

1
  • so you want string from first underscore to the end of the line? Commented Oct 18, 2019 at 20:30

2 Answers 2

5

No need to use any regexp

Please try below as shown. Basically Splitting on _ char and getting second item via getItem()

>>> from pyspark.sql import functions as F
>>> my_list = [("1849adb0-gfhe6543-bduyre763ryi-hjdsgf87qwefdb-78a9f4811265_ABC",),("1849adb0-rdty4545y4-657u5h556-zsdcafdqwddqdas-78a9f4811265_1234",),("1849adb0-89o8iulk89o89-89876h5-432rebm787rrer-78a9f4811265_12345678",)]
>>> my_df = spark.createDataFrame(my_list, schema=["input_v"])
>>> my_df.withColumn("get_val", F.split(F.col("input_v"),"_").getItem(1)).show(20,False)

Result

+-------------------------------------------------------------------+--------+
|input_v                                                            |get_val |
+-------------------------------------------------------------------+--------+
|1849adb0-gfhe6543-bduyre763ryi-hjdsgf87qwefdb-78a9f4811265_ABC     |ABC     |
|1849adb0-rdty4545y4-657u5h556-zsdcafdqwddqdas-78a9f4811265_1234    |1234    |
|1849adb0-89o8iulk89o89-89876h5-432rebm787rrer-78a9f4811265_12345678|12345678|
+-------------------------------------------------------------------+--------+```


Sign up to request clarification or add additional context in comments.

Comments

2

You can use regexp_extract to extract data after _

Example:

from pyspark.sql.functions import *

df=spark.sql("""select stack(3,"1849adb0-gfhe6543-bduyre763ryi-hjdsgf87qwefdb-78a9f4811265_ABC","1849adb0-rdty4545y4-657u5h556-zsdcafdqwddqdas-78a9f4811265_1234","1849adb0-89o8iulk89o89-89876h5-432rebm787rrer-78a9f4811265_12345678") as (txt)""")

df.withColumn("extract",regexp_extract(col("txt"),"_(.*)",1)).show(10,False)

Result:

+-------------------------------------------------------------------+--------+
|txt                                                                |extract |
+-------------------------------------------------------------------+--------+
|1849adb0-gfhe6543-bduyre763ryi-hjdsgf87qwefdb-78a9f4811265_ABC     |ABC     |
|1849adb0-rdty4545y4-657u5h556-zsdcafdqwddqdas-78a9f4811265_1234    |1234    |
|1849adb0-89o8iulk89o89-89876h5-432rebm787rrer-78a9f4811265_12345678|12345678|
+-------------------------------------------------------------------+--------+

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.