How can I create a 2D array with random numbers without using NumPy (Python)
3 Answers
You could use the random module and populate a nested list with a list comprehension
import random
low = 0
high = 10
cols = 10
rows = 5
[random.choices(range(low,high), k=cols) for _ in range(rows)]
[[5, 7, 1, 0, 6, 5, 9, 2, 5, 6],
[9, 2, 3, 0, 6, 7, 0, 6, 6, 3],
[2, 7, 9, 2, 4, 5, 5, 9, 9, 4],
[2, 6, 7, 8, 5, 1, 4, 4, 4, 4],
[9, 2, 8, 4, 5, 2, 0, 1, 2, 1]]
For a nested list of floats, you can map each range with float:
choices = list(map(float, range(low,high)))
[random.choices(choices , k=cols) for _ in range(rows)]
[[0.0, 3.0, 9.0, 1.0, 5.0, 3.0, 7.0, 4.0, 2.0, 4.0],
[5.0, 8.0, 7.0, 7.0, 7.0, 2.0, 9.0, 8.0, 2.0, 6.0],
[3.0, 3.0, 1.0, 9.0, 2.0, 8.0, 7.0, 2.0, 9.0, 7.0],
[7.0, 8.0, 1.0, 2.0, 0.0, 6.0, 7.0, 6.0, 0.0, 9.0],
[3.0, 3.0, 3.0, 1.0, 7.0, 8.0, 3.0, 9.0, 2.0, 8.0]]
4 Comments
[[random.random() for i in range(cols)] for _ in range(rows)] @tjardskleener[[random.random() for _ in range(3)] for _ in range(7)]
This generates a 2D array of size [7, 3] with random float in [0, 1) interval.
You use nested list comprehensions. The outer one builds a main list while the inner one builds lists that are used as elements of the main list.
Edit
You can then tweak it for your needs. For example:
import random
import pprint
NUM_ROWS=7
NUM_COLS=3
MAX_VAL=1000.50
MIN_VAL=-MAX_VAL
pprint.pprint([
[random.uniform(MIN_VAL, MAX_VAL) for _ in NUM_COLS]
for _ in NUM_ROWS
])
This prints a list/array/matrix of 7 lines and 3 colums with random floats in [-1000.50, 1000.50) interval:
[[561.3985362160208, -157.9871329592354, -245.7102502320838],
[-817.8786101352823, -528.9769041860632, 102.67728824479877],
[-886.6488625065194, 941.0504221837489, -458.58155555154565],
[6.69525238666165, 919.5903586746183, 66.70453038938808],
[754.3718741592056, -121.25678519054622, -577.7163532922043],
[-352.3158889341157, 254.9985130814921, -365.0937338693691],
[563.0633042715097, 833.2963094260072, -946.6729221921638]]
The resulting array can be indexed with array[line][column].
5 Comments
uniform instead of random. [[random.uniform(-1000.50, 1000.50) for _ in range(3)] for _ in range(7)]random.random() gives you a number between [0,1), so to get values between [-1000.50,1000.50) you need to modify the returned value like this: random.random() * 2001.0 - 1000.5 or use the random.uniform as mentioned by @AlexisBRENON.random.uniform method do this internaly but improve clarity.import pandas as pd
from random import randint
outside_size = 10 # How many nested lists to include
inside_size = 10 # How many numbers will be in an inside list
outside_list = [] # The final list
for i in range(0, outside_size, 1):
_list = [] # Create new "inside" (nested) list
for j in range(0, inside_size, 1): # Populate the nested list with random numbers
_list.append(randint(0, 100))
outside_list.append(_list) # Add the inside (nested) list to the outside (final) list
df = pd.DataFrame(outside_list) # Create the dataframe from it
print(df)
OUTPUT:
0 1 2 3 4 5 6 7 8 9
0 63 79 100 42 98 45 80 85 71 98
1 65 38 55 5 49 19 99 87 36 74
2 49 76 71 56 54 30 90 50 96 26
3 31 46 79 38 13 66 10 31 8 59
4 0 98 7 67 87 7 95 79 94 50
5 79 44 86 83 1 79 15 80 31 79
6 86 5 19 78 78 87 77 8 43 90
7 30 59 4 4 68 85 95 34 92 48
8 65 39 28 76 12 59 28 29 15 56
9 34 22 68 57 97 69 59 62 12 29
For speed and brevity of code, you can use a nested list comprehension to get the same effect ...
outside_list = [[randint(0, 100) for j in range(0, inside_size)] for i in range(0, outside_size) ]
df = pd.DataFrame(outside_list)