I have to call a function func_test(spark,a,b) which accepts two string values and create a df out of it. spark is a SparkSession variable
These two string values are two columns of another dataframe and would be different for different rows of that dataframe.
I am unable to achieve this.
Things tried so far:
1.
ctry_df = func_test(spark, df.select("CTRY").first()["CTRY"],df.select("CITY").first()["CITY"])
Gives CTRY and CITY of only the first record of the df.
2.
ctry_df = func_test(spark, df['CTRY'],df['CITY'])
Gives Column<b'CTRY'> and Column<b'CITY'> as values.
Example: df is:
+----------+----------+-----------+
| CTRY | CITY | XYZ |
+----------+----------+-----------+
| US | LA | HELLO|
| UK | LN | WORLD|
| SN | SN | SPARK|
+----------+----------+-----------+
So, I want first call to fetch func_test(spark,US,LA); second call to go func_test(spark,UK,LN); third call to be func_test(spark,SN,SN) and so on.
Pyspark - 3.7
Spark - 2.2
Edit 1:
Issue in detail:
func_test(spark,string1,string2) is a function which accepts two string values. Inside this function is a set of various dataframe operations done. For example:- First spark sql in the func_test is a normal select and these two variables string1 and string2 are used in the where clause. The result of this spark sql which generates a df is a temp table of next spark sql and so on. Finally, it creates a df which this function func_test(spark,string1,string2) returns.
Now, In the main class, I have to call this func_test and the two parameters string1 and string2 will be fetched from records of dataframe. So that, first func_test call generates query as select * from dummy where CTRY='US' and CITY='LA'. And the subsequent operations happen which results in df. Second call to func_test becomes select * from dummy where CTRY='UK' and CITY='LN'. Third call becomes select * from dummy where CTRY='SN' and CITY='SN' and so on.