I'm trying to implement the Minimum Distance Algorithm for image classification using GDAL and Python. After calculating the mean pixel-value of the sample areas and storing them into a list of arrays ("sample_array"), I read the image into an array called "values". With the following code I loop through this array:
values = valBD.ReadAsArray()
# loop through pixel columns
for X in range(0,XSize):
# loop thorugh pixel lines
for Y in range (0, YSize):
# initialize variables
minDist = 9999
# get minimum distance
for iSample in range (0, sample_count):
# dist = calc_distance(values[jPixel, iPixel], sample_array[iSample])
# computing minimum distance
iPixelVal = values[Y, X]
mean = sample_array[iSample]
dist = math.sqrt((iPixelVal - mean) * (iPixelVal - mean)) # only for testing
if dist < minDist:
minDist = dist
values[Y, X] = iSample
classBD.WriteArray(values, xoff=0, yoff=0)
This procedure takes very long for big images. That's why I want to ask if somebody knows a faster method. I don't know much about access-speed of different variables in python. Or maybe someone knows a libary I could use. Thanks in advance, Mario