You didn't mention where you're getting your data from. (I've updated the url in my code. It's still the same API, which returns information for all 457 players, so there is no need to use selenium to navigate to the other pages). The official nba website seems to be offering their data in JSON format, which is always desirable when web scraping:
import requests
import json
# url = "https://stats.nba.com/stats/leagueLeaders?LeagueID=00&PerMode=PerGame&Scope=S&Season=2019-20&SeasonType=Regular+Season&StatCategory=PTS"
url = "https://stats.nba.com/stats/leaguedashplayerstats?College=&Conference=&Country=&DateFrom=&DateTo=&Division=&DraftPick=&DraftYear=&GameScope=&GameSegment=&Height=&LastNGames=0&LeagueID=00&Location=&MeasureType=Base&Month=0&OpponentTeamID=0&Outcome=&PORound=0&PaceAdjust=N&PerMode=PerGame&Period=0&PlayerExperience=&PlayerPosition=&PlusMinus=N&Rank=N&Season=2019-20&SeasonSegment=&SeasonType=Regular+Season&ShotClockRange=&StarterBench=&TeamID=0&TwoWay=0&VsConference=&VsDivision=&Weight="
response = requests.get(url)
response.raise_for_status()
data = json.loads(response.text)
players = []
for player_data in data["resultSet"]["rowSet"]:
player = dict(zip(data["resultSet"]["headers"], player_data))
players.append(player)
for player in players[:10]:
print(f"{player['PLAYER']} ({player['TEAM_ABBREVIATION']}) is rank {player['RANK']} with a GP of {player['GP']}")
Output:
James Harden (HOU) is rank 1 with a GP of 18
Giannis Antetokounmpo (MIL) is rank 2 with a GP of 19
Luka Doncic (DAL) is rank 3 with a GP of 18
Bradley Beal (WAS) is rank 4 with a GP of 17
Trae Young (ATL) is rank 5 with a GP of 18
Damian Lillard (POR) is rank 6 with a GP of 18
Karl-Anthony Towns (MIN) is rank 7 with a GP of 16
Anthony Davis (LAL) is rank 8 with a GP of 18
Brandon Ingram (NOP) is rank 9 with a GP of 15
LeBron James (LAL) is rank 10 with a GP of 19
Note: I have no idea what a "GP" is - I just picked that for demonstration. Here's a screenshot of Chrome's network logger, showing a small part of the expanded JSON resource (EDIT The json response from the new url looks exactly the same, except some of the headers are different, like "TEAM" -> "TEAM_ABBREVIATION"):

You can see the values - which you're struggling to extract out of one giant string - nicely separated into separate elements. The code I posted above creates key-value pairs using the headers ("PLAYER_ID", "RANK", etc. found in data["resultSet"]["headers"]) and these values.