l = {'col1': [[1,2,3], [4,5,6]]}
df = pd.DataFrame(data = l)
col1
0 [1, 2, 3]
1 [4, 5, 6]
Desired output:
col1
0 1
1 2
2 3
3 4
4 5
5 6
Here is explode
df.explode('col1')
col1
0 1
0 2
0 3
1 4
1 5
1 6
.explode, nice!You can use np.ravel to flatten the list of lists:
import numpy as np, pandas as pd
l = {'col1': [[1,2,3], [4,5,6]]}
df = pd.DataFrame(np.ravel(*l.values()),columns=l.keys())
>>> df
col1
0 1
1 2
2 3
3 4
4 5
5 6
pd.np should work pd.DataFrame(pd.np.concatenate(*l.values()),columns=l.keys()) , but i see what you mean :)
l = {'col1': sum([[1,2,3], [4,5,6]],[])}