Idea is reshape by DataFrame.set_index withDataFrame.stack and replace missing values by empty columns names s,g,r, then Series.str.split by ; or ,, again reshape, then split by : and last reshape by Series.unstack:
df1 = (df.set_index('id')
.fillna('s,g,r')
.stack()
.str.split(',|;', expand=True)
.stack()
.str.split(':', expand=True)
.reset_index(level=2, drop=True)
.set_index(0, append=True)[1]
.unstack()
.rename_axis(('id','c'))
.rename_axis(None, axis=1)
.reset_index()
)
print (df1)
id c g r s
0 0 c1 B 2 1
1 0 c2 A 3 2
2 0 c3 C 4 1
3 0 c4 D 2 3
4 1 c1 None None None
5 1 c2 E 4 2
6 1 c3 C 3 3
7 1 c4 F 3 3
EDIT: First step is reshape by stack with index id:
print (df.set_index('id')
.fillna('s,g,r')
.stack())
id
0 c1 s:1,g:B,r:2
c2 s:2,g:A,r:3
c3 s:1,g:C,r:4
c4 s:3,g:D,r:2
1 c1 s,g,r
c2 s:2;g:E,r:4
c3 s:3;g:C,r:3
c4 s:3;g:F,r:3
dtype: object
Next step is spit by separator and again reshape by stack:
print (df.set_index('id')
.fillna('s,g,r')
.stack()
.str.split(',|;', expand=True)
.stack())
id
0 c1 0 s:1
1 g:B
2 r:2
c2 0 s:2
1 g:A
2 r:3
c3 0 s:1
1 g:C
2 r:4
c4 0 s:3
1 g:D
2 r:2
1 c1 0 s
1 g
2 r
c2 0 s:2
1 g:E
2 r:4
c3 0 s:3
1 g:C
2 r:3
c4 0 s:3
1 g:F
2 r:3
dtype: object
Then split by : to 2 columns and convert first column to last level of MultiIndex:
print (df.set_index('id')
.fillna('s,g,r')
.stack()
.str.split(',|;', expand=True)
.stack()
.str.split(':', expand=True)
.reset_index(level=2, drop=True)
.set_index(0, append=True)[1])
id 0
0 c1 s 1
g B
r 2
c2 s 2
g A
r 3
c3 s 1
g C
r 4
c4 s 3
g D
r 2
1 c1 s None
g None
r None
c2 s 2
g E
r 4
c3 s 3
g C
r 3
c4 s 3
g F
r 3
Last reshape by unstack:
print (df.set_index('id')
.fillna('s,g,r')
.stack()
.str.split(',|;', expand=True)
.stack()
.str.split(':', expand=True)
.reset_index(level=2, drop=True)
.set_index(0, append=True)[1]
.unstack())
0 g r s
id
0 c1 B 2 1
c2 A 3 2
c3 C 4 1
c4 D 2 3
1 c1 None None None
c2 E 4 2
c3 C 3 3
c4 F 3 3