I'm trying to isolate some user specific parameters by having matrix of parameters where each array would learn parameters specific to that user.
I want to index the matrix using the user id, and concatenate the parameters to the other features.
Lastly, have some fully-connected layers to get desirable outcome.
However, I keep getting this error on the last line of the code.
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-1-93de3591ccf0> in <module>
20 # combined = tf.keras.layers.Concatenate(axis=-1)([le_param, le])
21
---> 22 net = tf.keras.layers.Dense(128)(combined)
~/anaconda3/envs/tam-env/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/base_layer.py in __call__(self, inputs, *args, **kwargs)
793 # framework.
794 if build_graph and base_layer_utils.needs_keras_history(inputs):
--> 795 base_layer_utils.create_keras_history(inputs)
796
797 # Clear eager losses on top level model call.
~/anaconda3/envs/tam-env/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/base_layer_utils.py in create_keras_history(tensors)
182 keras_tensors: The Tensors found that came from a Keras Layer.
183 """
--> 184 _, created_layers = _create_keras_history_helper(tensors, set(), [])
185 return created_layers
186
~/anaconda3/envs/tam-env/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/base_layer_utils.py in _create_keras_history_helper(tensors, processed_ops, created_layers)
229 constants[i] = backend.function([], op_input)([])
230 processed_ops, created_layers = _create_keras_history_helper(
--> 231 layer_inputs, processed_ops, created_layers)
232 name = op.name
233 node_def = op.node_def.SerializeToString()
~/anaconda3/envs/tam-env/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/base_layer_utils.py in _create_keras_history_helper(tensors, processed_ops, created_layers)
229 constants[i] = backend.function([], op_input)([])
230 processed_ops, created_layers = _create_keras_history_helper(
--> 231 layer_inputs, processed_ops, created_layers)
232 name = op.name
233 node_def = op.node_def.SerializeToString()
~/anaconda3/envs/tam-env/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/base_layer_utils.py in _create_keras_history_helper(tensors, processed_ops, created_layers)
227 else:
228 with ops.init_scope():
--> 229 constants[i] = backend.function([], op_input)([])
230 processed_ops, created_layers = _create_keras_history_helper(
231 layer_inputs, processed_ops, created_layers)
~/anaconda3/envs/tam-env/lib/python3.6/site-packages/tensorflow_core/python/keras/backend.py in __call__(self, inputs)
3746 return nest.pack_sequence_as(
3747 self._outputs_structure,
-> 3748 [x._numpy() for x in outputs], # pylint: disable=protected-access
3749 expand_composites=True)
3750
~/anaconda3/envs/tam-env/lib/python3.6/site-packages/tensorflow_core/python/keras/backend.py in <listcomp>(.0)
3746 return nest.pack_sequence_as(
3747 self._outputs_structure,
-> 3748 [x._numpy() for x in outputs], # pylint: disable=protected-access
3749 expand_composites=True)
3750
ValueError: Cannot convert a Tensor of dtype resource to a NumPy array.
Code to reproduce the error:
import tensorflow as tf
num_uids = 50
input_uid = tf.keras.layers.Input(shape=(1,), dtype=tf.int32)
params = tf.Variable(tf.random.normal((num_uids, 9)), trainable=True)
param = tf.gather_nd(params, input_uid)
input_shared_features = tf.keras.layers.Input(shape=(128,), dtype=tf.float32)
combined = tf.concat([param, input_shared_features], axis=-1)
net = tf.keras.layers.Dense(128)(combined)
There are few things I've tried:
- I tried to use tf.keras.layers.Lambda to encapsulate tf.gather_nd and tf.concat.
- I tried replacing tf.concat with tf.keras.layers.Concatenate.
Oddly enough if I specify the number of items and replace Input with tf.Variable, the code would work as expected:
import tensorflow as tf
num_uids = 50
input_uid = tf.Variable(tf.ones((32, 1), dtype=tf.int32))
params = tf.Variable(tf.random.normal((num_uids, 9)), trainable=True)
param = tf.gather_nd(params, input_uid)
input_shared_features = tf.Variable(tf.ones((32, 128), dtype=tf.float32))
combined = tf.concat([param, input_shared_features], axis=-1)
net = tf.keras.layers.Dense(128)(combined)
I'm using Tensorflow 2.1 with Python 3.6.10
combinedinput?