I need some help with the following problem:
the data looks like
dt value
15 0
15 2
15 8
15 8
15 10
16 12
15 19
15 35
15 45
16 45
16 45
15 50
15 0
16 26
15 43
15 50
15 0
.
.
.
now I have to sum up dt until value reaches 50, always beginning from 0.
I have tried the following, but I am not sure if it is right,
df['value'].values[(df['value'].values > 0) & (df['value'].values < 50)] = 1
df = df.assign(counter_col_x = df.loc[df['value'].eq(1)].groupby(df['value'].ne(df['value'].shift()).cumsum()).ngroup())
Thanks for any hints!
50? Or there might be data after?df.loc[df['value'].between(0,50, inclusive = False),'dt'].groupby(df['value'].ge(50).cumsum()).sum()? orsizeinsteadsum()df['value'].values[(df['value'].values > 0) & (df['value'].values < 50)] = 1Won't that work without the.values?