I have a json dictionary of thousands of json objects called 'businesses' that contains the following nested JSON in an array. Each 'business' has a 'unique-request-id' that comes back as well. Sometimes, one request could come back with multiple busineses.
{'principals': [{'addresses': [{'city': 'DENVILLE', 'state': 'NJ', 'metadata': {'sources': [], 'lastSeen': None, 'firstSeen': None, 'sourceCount': 0}, 'zip': '07834', 'address': '87 JILLOW AVE'}], 'titles': ['SECRETARY'], 'names': [{'suffix': None, 'firstName': 'JAMES', 'middleName': None, 'lastName': 'VU', 'salutation': None, 'pids': [], 'metadata': {'sources': [], 'lastSeen': None, 'firstSeen': None, 'sourceCount': 0}}, {'suffix': None, 'firstName': 'LAURA', 'middleName': 'A', 'lastName': 'VU', 'salutation': None, 'pids': [], 'metadata': {'sources': [], 'lastSeen': None, 'firstSeen': None, 'sourceCount': 0}}], 'pids': ['1000320219031584'], 'lastSeenDate': '2008-01-01T00:00:00.000Z', 'firstSeenDate': None}, {'addresses': [{'city': 'LAKE HAVASU CITY', 'state': 'AZ', 'metadata': {'sources': [], 'lastSeen': None, 'firstSeen': None, 'sourceCount': 0}, 'zip': '86403', 'address': '1887 WILLOW AVE'}], 'titles': ['MANAGER'], 'names': [{'suffix': None, 'firstName': 'JASON', 'middleName': None, 'lastName': 'ROBERTS', 'salutation': None, 'pids': [], 'metadata': {'sources': [], 'lastSeen': None, 'firstSeen': None, 'sourceCount': 0}}], 'pids': ['1000320147115755'], 'lastSeenDate': '1999-07-28T00:00:00.000Z', 'firstSeenDate': None}], 'tradeNames': ['DORI LAURA DVM'], 'addresses': [{'city': 'HAVASU CITY', 'state': 'NY', 'metadata': {'sources': [], 'lastSeen': None, 'firstSeen': None, 'sourceCount': 0}, 'zip': '16403', 'address': '299 PASEO DEL SOL'}], 'searchType': 'Name+Address', 'contacts': [], 'phones': ['19284532022'], 'registrationDate': '1999-07-29T00:00:00.000Z', 'websites': ['WWW.DORIVET.COM'], 'eid': '39281818', 'sources': {'sources': [], 'lastSeen': None, 'firstSeen': None, 'sourceCount': 5}, 'dataSource': 'iData', 'names': ['DORI VETERINARY CENTER INC', 'DORI-ROBERTS INC'], 'registrationAddress': {'city': 'PHOENIX', 'state': 'AZ', 'metadata': {'sources': [], 'lastSeen': None, 'firstSeen': None, 'sourceCount': 0}, 'zip': '85007', 'address': '1200 W WASHINGTON'}, 'duns': ['042512348'], 'relatedBusinesses': [], 'industryNames': ['VETERINARIAN, ANIMAL SPECIALTIES'], 'officeAddress': None, 'ein': ['77711133333']}
I would like the ultimate CSV from DataFrame to look like this ... with all the flattened columns to the right.
RequestId BusinessName BusinessAddress ....
ABCD DORI VETERINARY CENTER INC. 87 JILLOW AVENUE
ABCD SECONDARY VETERINARY CENTER INC. 3 MAIN ST.
XYZV. xxxbusiness 20 AUTO ST.
Is this possible using Pandas and DataFrames?