I would like to add float coordinates to a numpy array by splitting the intensity based on the centre of mass of the coordinate to neighbouring pixels.
As an example with integers:
import numpy as np
arr = np.zeros((5, 5), dtype=float)
coord = [2, 2]
arr[coord[0], coord[1]] = 1
arr
>>> array([[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])
However I would like to distribute the intensity across neighbouring pixels when coord is float data, eg. coord = [2.2, 1.7].
I have considered using a gaussian, eg:
grid = np.meshgrid(*[np.arange(i) for i in arr.shape], indexing='ij')
out = np.exp(-np.dstack([(grid[i]-c)**2 for i, c in enumerate(coord)]).sum(axis=-1) / 0.5**2)
which gives good results, but becomes slow for 3d data and thousands of points.
Any advice or ideas would be appreciated, thanks.
Based on @rpoleski suggestion, take a local region and apply weighting by distance. This is a good idea although the implementation I have does not maintain the original centre of mass of the coordinates, for example:
from scipy.ndimage import center_of_mass
coord = [2.2, 1.7]
# get region coords
grid = np.meshgrid(*[range(2) for i in coord], indexing='ij')
# difference Euclidean distance between coords and coord
delta = np.linalg.norm(np.dstack([g-(c%1) for g, c, in zip(grid, coord)]), axis=-1)
value = 3 # pixel value of original coord
# create final array by 1/delta, ie. closer is weighted more
# normalise by sum of 1/delta
out = value * (1/delta) / (1/delta).sum()
out.sum()
>>> 3.0 # as expected
# but
center_of_mass(out)
>>> (0.34, 0.63) # should be (0.2, 0.7) in this case, ie. from coord
Any ideas?
arr[int(c[0]), int(c[1])],arr[int(c[0])+1, int(c[1])]etc. with values being proportional to distance fromc. In your solution, I think your code is slow because you distribute the signal over whole array andnp.exp()calculation is slow. Take only nearby points and calculate-distance_from_coords**2/2and use that as argument fornp.exp().cityblockfunction in thescipylibrary with this functionality for anyone interested. I didn't know about this before and it's always good to pass along new information: docs.scipy.org/doc/scipy/reference/generated/…