"Pageview trend" likely refers to pageview acceleration, not velocity. Your dataset actually already is a list of velocities (pageviews/day). Pageviews are non-decreasing values, so pageview velocity can never be negative. The following describes how to calculate pageview acceleration, which may be negative.
PV_acceleration(t1,t2) = (PV_velocity{t2} - PV_velocity{t1}) / (t2 - t1)
("PV" == "Pageview")
Explanation:
Acceleration is simply change in velocity divided by change in time. Since your dataset is a list of page view velocities, you can plug them directly into the formula:
PV_acceleration("2/1/2010", "2/3/2010") = (60 - 100) / ("2/3/2010" - "2/1/2010")
= -40 / 2
= -20 pageviews per day per day
Note the data for "2/2/2010" was not used. An alternate method is to calculate three PV_accelerations (using a date range that goes back only a single day) and averaging them. There is not enough data in your example to do this for three days, but here is how to do it for the last two days:
PV_acceleration("2/3/2010", "2/2/2010") = (60 - 80) / ("2/3/2010" - "2/2/2010")
= -20 / 1
= -20 pageviews per day per day
PV_acceleration("2/2/2010", "2/1/2010") = (80 - 100) / ("2/2/2010" - "2/1/2010")
= -20 / 1
= -20 pageviews per day per day
PV_acceleration_average("2/3/2010", "2/2/2010") = -20 + -20 / 2
= -20 pageviews per day per day
This alternate method did not make a difference for the article 1 data because the page view acceleration did not change between the two days, but it will make a difference for article 2.