For a trained model and vocabulary (which is part of the text field , you don't have to save the whole class) :
def read_vocab(path):
#read vocabulary pkl
import pickle
pkl_file = open(path, 'rb')
vocab = pickle.load(pkl_file)
pkl_file.close()
return vocab
def load_model_and_vocab():
import torch
import os.path
my_path = os.path.abspath(os.path.dirname(__file__))
vocab_path = os.path.join(my_path, vocab_file)
weights_path = os.path.join(my_path, WEIGHTS)
vocab = read_vocab(vocab_path)
model = classifier(vocab_size=len(vocab))
model.load_state_dict(torch.load(weights_path))
model.eval()
return model, vocab
def predict(model, vocab, sentence):
tokenized = [w.text.lower() for w in nlp(sentence)] # tokenize the sentence
indexed = [vocab.stoi[t] for t in tokenized] # convert to integer sequence
length = [len(indexed)] # compute no. of words
tensor = torch.LongTensor(indexed).to('cpu') # convert to tensor
tensor = tensor.unsqueeze(1).T # reshape in form of batch,no. of words
length_tensor = torch.LongTensor(length) # convert to tensor
prediction = model(tensor, length_tensor) # prediction
return round(1-prediction.item())
"classifier" is the class I defined for my model.
For saving the vocabulary pkl :
def save_vocab(vocab):
import pickle
output = open('vocab.pkl', 'wb')
pickle.dump(vocab, output)
output.close()
And for saving the model after training you can use :
torch.save(model.state_dict(), 'saved_weights.pt')
Tell me if it worked for you!