1

I am a newbie in AWS. Right now I have defined an image segmentation function in SageMaker notebook instance and this will return masks.

I didn't train my models there, what I have done is pip install models packages there, upload pre-trained weights manually. The rest is very similar to working in local machine: I imported package, load the weights, defined a function to take an image as input then outputs masks.

My question is: is there a way to host my function so that I can call it with URL endpoint + one image info, then it returns me masks in response?

Again I am so new to AWS and I begin to doubt SageMaker is not designed for this job... The reason I chose SageMaker is the need of computing capacity, I don't think I can do this job with pure lambda.

1 Answer 1

0

SageMaker inference endpoints currently rely on an interface based on Docker images. At the base level, you can set up a Docker image that runs a web server and responds to the endpoints on the ports that AWS require. This guide will show you how to do it: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-inference-code.html.

This is an annoying amount of work. If you're using a well-known framework they have a container library that contains some boilerplate code you might be able to reuse: https://github.com/aws/sagemaker-containers. You might have to do some customization there.

Or don't use SageMaker inference endpoints at all :) If your model can fit within the size / memory restrictions of AWS Lambda, that is an easier option!

Full disclaimer, I'm working on a platform that competes with SageMaker: Model Zoo

Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.