I have 4 CSV files with \t or tab as delimiter.
alok@alok-HP-Laptop-14s-cr1:~/tmp/krati$ for file in sample*.csv; do echo $file; cat $file; echo ; done
sample1.csv
ProbeID p_code intensities
B1_1_3 6170 2
B2_1_3 6170 2.2
B3_1_4 6170 2.3
12345 6170 2.4
1234567 6170 2.5
sample2.csv
ProbeID p_code intensities
B1_1_3 5320 3
B2_1_3 5320 3.2
B3_1_4 5320 3.3
12345 5320 3.4
1234567 5320 3.5
sample3.csv
ProbeID p_code intensities
B1_1_3 1234 4
B2_1_3 1234 4.2
B3_1_4 1234 4.3
12345 1234 4.4
1234567 1234 4.5
sample4.csv
ProbeID p_code intensities
B1_1_3 3120 5
B2_1_3 3120 5.2
B3_1_4 3120 5.3
12345 3120 5.4
1234567 3120 5.5
All 4 files have same headers.
ProbeID is same across all files, order is also same. Each file have same p_code across single CSV file.
I have to merge all these CSV files into one in this format.
alok@alok-HP-Laptop-14s-cr1:~/tmp/krati$ cat output1.csv
ProbeID 6170 5320 1234 3120
B1_1_3 2 3 4 5
B2_1_3 2.2 3.2 4.2 5.2
B3_1_4 2.3 3.3 4.3 5.3
12345 2.4 3.4 4.4 5.4
1234567 2.5 3.5 4.5 5.5
In this output file columns are dynamic based on p_code value.
I can do this easily in Python using dictionary. How can I produce such output using Pandas?