1

I have the following data:

sentences = [{'mary':'N', 'jane':'N', 'can':'M', 'see':'V','will':'N'},
     {'spot':'N','will':'M','see':'V','mary':'N'},
     {'will':'M','jane':'N','spot':'V','mary':'N'},
     {'mary':'N','will':'M','pat':'V','spot':'N'}]

I want to create a data frame where each key (from the pairs above) will be the column name and each value (from above) will be the index of the row. The values in the data frame will be counting of each matching point between the key and the value.

The expected result should be:

df = pd.DataFrame([(4,0,0),
                   (2,0,0),
                   (0,1,0),
                   (0,0,2),
                   (1,3,0),
                   (2,0,1),
                   (0,0,1)],
                  index=['mary', 'jane', 'can', 'see', 'will', 'spot', 'pat'],
                  columns=('N','M','V'))
0

2 Answers 2

3

Use value_counts per columns in DataFrame.apply, replace missing values, convert to integers and last transpose by DataFrame.T:

df = df.apply(pd.value_counts).fillna(0).astype(int).T
print (df)
      M  N  V
mary  0  3  1
jane  0  2  0
can   1  0  0
see   0  0  2
will  3  1  0
spot  0  2  1
pat   0  0  1

Or use DataFrame.stack with SeriesGroupBy.value_counts and Series.unstack:

df = df.stack().groupby(level=1).value_counts().unstack(fill_value=0)
print (df)
      M  N  V
can   1  0  0
jane  0  2  0
mary  0  3  1
pat   0  0  1
see   0  0  2
spot  0  2  1
will  3  1  0
Sign up to request clarification or add additional context in comments.

Comments

2
pd.DataFrame(sentences).T.stack().groupby(level=0).value_counts().unstack().fillna(0)

       M    N   V
can   1.0   0.0 0.0
jane  0.0   2.0 0.0
mary  0.0   3.0 1.0
pat   0.0   0.0 1.0
see   0.0   0.0 2.0
spot  0.0   2.0 1.0
will  3.0   1.0 0.0

Cast as int if needed to.

pd.DataFrame(sentences).T.stack().groupby(level=0).value_counts().unstack().fillna(0).cast("int")

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.