So the question can be boiled down to
"Given a 3D numpy array with the shape (1, 6, 3) how can we make a copy but a shape of (1, 6, 2) by removing the last indexed value from the innermost nested array?"
Array Indexing
The below example achieves this by slicing the original array (a) to return the desired structure.
import numpy as np
a = np.array([[[1,2,13],[12,2,32],[61,2,6],[1,23,3],[1,21,3],[91,2,38]]])
o = a[:,:,:2]
List Comprehension
The below makes use of a list comprehension applied to filter a down in the manner described above.
import numpy as np
a = np.array([[[1,2,13],[12,2,32],[61,2,6],[1,23,3],[1,21,3],[91,2,38]]])
o = np.array([[j[:2] for i in a for j in i]])
In each of the above examples o will refer to the following array (the first output you are asking for).
array([[[ 1, 2],
[12, 2],
[61, 2],
[ 1, 23],
[ 1, 21],
[91, 2]]])
Given o as defined by one of the above examples, your second sought output is accessible via o[0].
print(a[:, 0:, 1:])