you've not been very precise in where these functions are coming from, but I'm guessing that by normal(size=it[:]) you mean:
import numpy as np
it = 2 ** np.arange(6, 25)
np.random.normal(size=it)
which would be telling numpy to create a 19 dimensional array (i.e. len(it)) that contains 6 × 1085 elements (i.e. np.prod(it.astype(float)) as floats because the number overflows an int64). numpy is saying that it can't do that, which seems like a reasonable thing to do.
Numpy doesn't like the "ragged arrays" you're trying to create, neither do most matrix/numeric libraries, hence support is limited!
I'm unsure why you consider that the "loop is really inefficient". You're creating ~33 million of floats from 19 iterations of a simple Python loop. The vast majority of time will be in highly optimised Numpy library code and some tiny (basically unmeasurable) amount of time will be spent evaluating your Python bytecode.
If you really want a one-liner then you can do:
X = [np.random.normal(size=2**i) for i in range(6, 25)]
which makes the split between Numpy and Python worlds more obvious.
Note that on my laptop, the Python code executes in ~5µs while the Numpy code runs for ~800ms. So you're trying to optimise the 0.0006% part!
Note that it's not always a win to use Numpy's vectorization, it only helps with larger arrays, for example the above loop is "faster" than:
X = [np.random.normal(i) for i in 2**np.arange(6, 25)]
4.8 vs 5.1 µs for the Python code, because of the time spent marshalling objects into/out of the Numpy world. Again, none of this matters, just use whichever solution makes your code easier to understand. A few microseconds is nothing compared to seconds.