I want to concatenate the multidimensional output of a NumPy computation matching in dimensions the shape of the input (with regards to rows and respective selected columns).
But it fails with: NotImplementedError: Can only union MultiIndex with MultiIndex or Index of tuples, try mi.to_flat_index().union(other) instead.
I do not want to flatten the indices first - so is there another way to get it to work?
import pandas as pd
from pandas import Timestamp
df = pd.DataFrame({('metrik_0', Timestamp('2020-01-01 00:00:00')): {(1, 1): 2.5393693602911447, (1, 5): 4.316896324314225, (1, 6): 4.271001191238499, (1, 9): 2.8712588011247377, (1, 11): 4.0458495954752545}, ('metrik_0', Timestamp('2020-01-01 01:00:00')): {(1, 1): 4.02779063729038, (1, 5): 3.3849606155101224, (1, 6): 4.284114856052976, (1, 9): 3.980919941298365, (1, 11): 5.042488191587525}, ('metrik_0', Timestamp('2020-01-01 02:00:00')): {(1, 1): 2.374592085569529, (1, 5): 3.3405503781564487, (1, 6): 3.4049690284720366, (1, 9): 3.892686173978996, (1, 11): 2.1876998087043127}})
def compute_return_columns_to_df(df, colums_to_process,axis=0):
method = 'compute_result'
renamed_base_levels = map(lambda x: f'{x}_{method}', colums_to_process.get_level_values(0).unique())
renamed_columns = colums_to_process.set_levels(renamed_base_levels, level=0)
#####
# perform calculation in numpy here
# for the sake of simplicity (and as the actual computation is irrelevant - it is omitted in this minimal example)
result = df[colums_to_process].values
#####
result = pd.DataFrame(result, columns=renamed_columns)
display(result)
return pd.concat([df, result], axis=1) # fails with: NotImplementedError: Can only union MultiIndex with MultiIndex or Index of tuples, try mi.to_flat_index().union(other) instead.
# I do not want to flatten the indices first - so is there another way to get it to work?
compute_return_columns_to_df(df[df.columns[0:3]].head(), df.columns[0:2])