I created a sample df that tried to look similar to yours (see below).
df
Unnamed: 0 2010 2011 2012 2013 ... 2016 2017 2018 2019 TTM
0 gross profit 10 11 12 13 ... 16 17 18 19 300
1 total revenue 1 2 3 4 ... 7 8 9 10 400
The aim now would be to add a row between them ('gross'), with the values you have listed in the picture.
One way to add the row could be with numpy.insert, which returns an array back so you have to convert back to a pd.DataFrame:
# Store the columns of your df
cols = df.columns
# Add the row (the number indicates the index position for the row to be added,1 is the 2nd row as Python indexes start from 0)
new = pd.DataFrame(np.insert
(df.values, 1, values = ['gross',22, 45, 65,87,108,130,151,152,156,135,133], axis=0),
columns=cols)
Which gets back:
new
Unnamed: 0 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 TTM
0 gross profit 10 11 12 13 14 15 16 17 18 19 300
1 gross 22 45 65 87 108 130 151 152 156 135 133
2 total revenue 1 2 3 4 5 6 7 8 9 10 400
Hopefully this will work for you. Let me know for issues.